Citation: | WU Xiao, JIANG Hongjie, CHENG Zhongxu, et al. Preparation and damping behavior of NiTip/5052 Al composites[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4821-4830. DOI: 10.13801/j.cnki.fhclxb.20221028.001 |
With the increasing demand of society and the development of industrial technology, the field of mechanical engineering has put forward higher requirements for the vibration and noise reduction of aluminum alloy materials. Aluminum alloys are generally considered to be low damping alloys and do not have low-temperature (below 150°C) damping characteristics, which limits their use in equipment and components with high requirements for vibration and noise reduction. Aiming at the problem of low intrinsic damping of aluminum alloy, NiTip/5052Al composites were prepared by friction stir processing (FSP), in order to improve the low temperature damping property of aluminum base alloy by using the phase transformation damping characteristics of NiTi particles.
The NiTi particles were added into the pre-set holes of the aluminum plate, and then the NiTip/5052Al composite was obtained after 4 passes of FSP by gantry friction stirring welding machine. The microstructure, phase composition and mechanical properties of the NiTip/5052Al composites were analyzed by Scanning Electron Microscope (SEM), Energy Dispersive Spectrometer (EDS), X-ray Diffraction (XRD) and universal testing machine, respectively. The phase transformation behavior of the samples was tested by Differential Scanning Calorimetry (DSC) to investigate the effect of phase transition characteristics of NiTi particles on the NiTip/5052Al composites. The Dynamic Mechanical Analysis (DMA) was used to test the internal friction and storage modulus of the samples in the temperature range of -120~90°C and to investigate the damping behavior of the NiTip/5052Al composites.
From the comparative analysis of the data and results in this paper, it can be seen that the NiTip/5052Al composite has the following main characteristics: (1) The interfaces between NiTi particles and 5052Al matrix are well bonded after FSP, and no interfacial reaction occurs. The NiTip/5052Al composites have martensitic transformation characteristics of NiTi alloy. (2) The strength of NiTip/5052Al composites are higher than 5052Al and FSP-5052Al alloy. The tensile strength of as-NiTip/5052Al composite is 240 MPa, which is 23.7% and 10.1% higher than 5052Al and FSP-5052Al alloy, respectively. The NiTi particles in the tensile fracture morphologically of the NiTip/5052Al alloy are intact and exhibit finer and more uniform dimples than those of 5052Al alloy. (3) The damping properties of NiTip/5052Al composites are significantly better than 5052Al alloy and FSP-5052Al alloy, and the composites exhibit significant phase transformation internal friction peaks. (4) Due to the different phase transformation behavior of the NiTi particle reinforced phase, internal friction peak temperatures of phase transformation of as-NiTip/5052Al and 550°C-NiTip/5052Al composites are also significantly different. When the temperature rises to 23°C, the internal friction peak of 550°C-NiTip /5052Al composite is 300% and 140% higher than 5052Al and FSP-5052Al alloys, respectively. When the temperature rises to 33°C,the internal friction peak of as-NiTip/5052Al composite is 233% and 100% higher than 5052Al and FSP-5052Al alloys, respectively. (5) The storage modulus of NiTip/5052Al composites decrease with increasing temperature and strain, and their storage modulus are higher than 5052Al alloy and FSP-5052Al alloy.Conclusions: The intrinsic phase transformation characteristics of the NiTi particles make the NiTip/5052Al composites all show a wide martensitic phase transformation characteristic peak. Due to the load-bearing effect of NiTi reinforcing particles in the NiTip/5052Al composite matrix, the strength of the composite is higher than that of 5052Al and FSP-5052Al alloys. The as-NiTip/5052Al composites have NiTi particles and pits in the tensile fracture, pits are caused by NiTi particles exfoliation, and there are a large number of fine dimples in matrix. The phase transformation damping behavior induced by NiTi particles during the phase transformation causes the composites to exhibit internal friction peaks with phase transformation characteristics, making the NiTip/5052Al composites have significantly better damping properties than 5052Al and FSP-5052Al alloys. The extrusion deformation effect in the FSP process and the difference in coefficient of thermal expansion between NiTi particles and 5052Al matrix lead to more residual stresses in the composites, which is conducive to improving the storage modulus of the composites, making the storage modulus of NiTip/5052Al composites significantly higher than that of 5052Al and FSP-5052Al alloys.
[1] |
WANG B, CHEN X H, PAN F S, et al. Effects of cold rolling and heat treatment on microstructure and mechanical properties of AA 5052 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China,2015,25(8):2481-2489. DOI: 10.1016/S1003-6326(15)63866-3
|
[2] |
秦艳利, 孙博慧, 张昊, 等. 选区激光熔化铝合金及其复合材料在航空航天领域的研究进展[J]. 中国激光, 2021, 48(14):15-31.
QIN Yanli, SUN Bohui, ZHANG Hao, et al. Development of selective laser melted aluminum alloys and aluminum matrix composites in aerospace field[J]. Chinese Journal of Lasers,2021,48(14):15-31(in Chinese).
|
[3] |
曾广凯, 崔君阁, 王雨辰, 等. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8):152-156.
ZENG Guangkai, CUI Junge, WANG Yuchen, et al. Microstructure and tensile properties of Al3Ti/Al-Si-Cu-V-Zr alloy composites[J]. Materials Reports,2022,36(8):152-156(in Chinese).
|
[4] |
ZHOU G F, JIANG H J, LIU C Y, et al. Effect of porous particle layer on damping capacity and storage modulus of AlSi30p/5052 Al composites[J]. Materials Letters,2021,300:130162. DOI: 10.1016/j.matlet.2021.130162
|
[5] |
WANG Y B, JIANG H J, LIU C Y, et al. Influence of Al particle layer on damping behavior of Alp/7075Al composites fabricated by hot rolling[J]. Journal of Alloys and Compounds,2021,882:160763. DOI: 10.1016/j.jallcom.2021.160763
|
[6] |
VENKATESWARA REDDY K, BHEEKYA NAIK R, MADHUSUDHAN REDDY G, et al. Damping capacity of aluminium surface layers developed through friction stir processing[J]. Materials Letters,2021,298:130031. DOI: 10.1016/j.matlet.2021.130031
|
[7] |
JIANG H J, LIU C Y, CHEN Y, et al. Evaluation of microstructure, damping capacity and mechanical properties of Al-35Zn and Al-35Zn-0.5Sc alloys[J]. Journal of Alloys and Compounds,2018,739:114-121. DOI: 10.1016/j.jallcom.2017.12.234
|
[8] |
LIU C Y, JIANG H J, ZHANG B, et al. High damping capacity of Al alloys produced by friction stir processing[J]. Materials Characterization,2018,136:382-387. DOI: 10.1016/j.matchar.2018.01.009
|
[9] |
黄文益, 江鸿杰, 王一博, 等. 6061铝颗粒层增强7075铝基复合材料的微观结构及阻尼性能[J]. 复合材料学报, 2021, 38(12):4220-4227. DOI: 10.13801/j.cnki.fhclxb.20210309.004
HUANG Wenyi, JIANG Hongjie, WANG Yibo, et al. Microstructure and damping capacity of 7075 aluminum matrix composite enhanced by 6061 aluminum particles layer[J]. Acta Materiae Compositae Sinica,2021,38(12):4220-4227(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20210309.004
|
[10] |
张忠明, 胡博, 高峰涛, 等. 往复挤压法制备Al2O3P/Al复合材料的室温阻尼性能[J]. 复合材料学报, 2011, 28(4):130-135.
ZHANG Zhongming, HU Bo, GAO Fengtao, et al. Room-temperature damping capacity of Al2O3P/Al composites prepared by reciprocating extrusion[J]. Acta Materiae Compositae Sinica,2011,28(4):130-135(in Chinese).
|
[11] |
SAN JUAN J, NÓ M L. Damping behavior during martensitic transformation in shape memory alloys[J]. Journal of Alloys and Compounds,2003,355(1-2):65-71. DOI: 10.1016/S0925-8388(03)00277-9
|
[12] |
CHEN Y, JIANG H C, LIU S W, et al. Damping capacity of TiNi-based shape memory alloys[J]. Journal of Alloys and Compounds,2009,482(1-2):151-154. DOI: 10.1016/j.jallcom.2009.03.148
|
[13] |
HU J, WU G H, ZHANG Q, et al. Mechanical properties and damping capacity of SiCp/TiNif/Al composite with different volume fraction of SiC particle[J]. Composites Part B: Engineering,2014,66:400-406. DOI: 10.1016/j.compositesb.2014.06.013
|
[14] |
HUO X Y, CHEN P, LAHKAR S, et al. Occurrence of the R-phase with increased stability induced by low temperature precipitate-free aging in a Ni50.9Ti49.1 alloy[J]. Acta Materialia,2022,227:117688. DOI: 10.1016/j.actamat.2022.117688
|
[15] |
SONG Y W, JIN M J, HAN X C, et al. Microstructural origin of ultrahigh damping capacity in Ni50.8Ti49.2 alloy containing nanodomains induced by insufficient annealing and low-temperature aging[J]. Acta Materialia,2021,205:116541. DOI: 10.1016/j.actamat.2020.116541
|
[16] |
WANG W, HAN P, XI X, et al. Preparation of NiTip/WE43 magnesium matrix composites by friction stir processing[J]. Rare Metal Materials and Engineering,2020,49(12):4050-4054.
|
[17] |
DIXIT M, NEWKIRK J W, MISHRA R S. Properties of friction stir-processed Al 1100-NiTi composite[J]. Scripta Materialia,2007,56(6):541-544. DOI: 10.1016/j.scriptamat.2006.11.006
|
[18] |
KAYA I, KARACA H E, NAGASAKO M, et al. Effects of aging temperature and aging time on the mechanism of martensitic transformation in nickel-rich NiTi shape memory alloys[J]. Materials Characterization,2020,159:110034. DOI: 10.1016/j.matchar.2019.110034
|
[19] |
ZHU J, WU H H, WU Y, et al. Influence of Ni4Ti3 precipitation on martensitic transformations in NiTi shape memory alloy: R phase transformation[J]. Acta Materialia,2021,207:116665. DOI: 10.1016/j.actamat.2021.116665
|
[20] |
RADI A, KHALIL A J, ETMINANFAR M R, et al. Influence of stress aging process on variants of nano-Ni4Ti3 precipitates and martensitic transformation temperatures in NiTi shape memory alloy[J]. Materials and Design,2018,142:93-100. DOI: 10.1016/j.matdes.2018.01.024
|
[21] |
冯欣欣, 衣晓洋, 王海振, 等. Ti-Ni基记忆合金复合材料的研究进展[J]. 复合材料学报, 2021, 38(7):2070-2077. DOI: 10.13801/j.cnki.fhclxb.20210312.007
FENG Xinxin, YI Xiaoyang, WANG Haizhen, et al. Progress of Ti-Ni based shape memory alloy composites[J]. Acta Materiae Compositae Sinica,2021,38(7):2070-2077(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20210312.007
|
[22] |
曹金营, 曹贺, 欧阳求保, 等. 多道次搅拌摩擦加工对SiCp/2 A14铝合金复合材料显微组织和力学性能的影响[J]. 复合材料学报, 2020, 37(11):2861-2869.
CAO Jinying, CAO He, OUYANG Qiubao, et al. Effect of multi-pass friction stir processing on microstructure and mechanical properties of SiCP/2A14 aluminum alloy composites[J]. Acta Materiae Compositae Sinica,2020,37(11):2861-2869(in Chinese).
|
[23] |
HUANG G Q, YAN Y F, WU J, et al. Microstructure and mechanical properties of fine-grained aluminum matrix composite reinforced with nitinol shape memory alloy particulates produced by underwater friction stir processing[J]. Journal of Alloys and Compounds,2019,786:257-271. DOI: 10.1016/j.jallcom.2019.01.364
|
[24] |
SANATY-ZADEH A. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect[J]. Materials Science and Engineering A,2012,531:112-118. DOI: 10.1016/j.msea.2011.10.043
|
[25] |
JIANG H J, ZHANG B, LIU C Y, et al. Mechanical and damping behavior of age-hardened and non-age-hardened Al alloys after friction stir processing[J]. Acta Metallurgica Sinica (English Letters),2019,32(9):1135-1141. DOI: 10.1007/s40195-019-00905-3
|
[26] |
黄学文, 董光能, 王慧, 等. TiNi形状记忆合金阻尼特性的研究[J]. 材料工程, 2003, 31(5):3-6, 14. DOI: 10.3969/j.issn.1001-4381.2003.08.001
HUANG Xuewen, DONG Guangneng, WANG Hui, et al. Study on damping characteristics of TiNi shape memory alloy[J]. Journal of Materials Engineering,2003,31(5):3-6, 14(in Chinese). DOI: 10.3969/j.issn.1001-4381.2003.08.001
|
[27] |
康泽天, 王志勇, 周博, 等. 形状记忆合金超弹性缆索力学行为的有限单元法[J]. 机械工程学报, 2020, 56(14):65-72.
KANG Zetian, WANG Zhiyong, ZHOU Bo, et al. Finite element method for mechanical behavior of shape memory alloy superelastic cables[J]. Journal of Mechanical Engi-neering,2020,56(14):65-72(in Chinese).
|
[28] |
路建宁, 王娟, 林颖菲, 等. 表面氧化处理对SiC/A356 Al复合材料组织及性能的影响[J]. 材料导报, 2020, 34(S2):1381-1385.
LU Jianning, WANG Juan, LIN Yingfei, et al. Effect of surface oxidation treatment on the structure and properties of SiC/A356 Al composites[J]. Materials Reports,2020,34(S2):1381-1385(in Chinese).
|
[29] |
LIU S, LI X, YAN D, et al. A novel TiNi/AlSi composite with high strength and high damping capacity[J]. Journal of Materials Science and Technology,2008,24(6):903-906.
|
[30] |
NI D R, WANG J J, MA Z Y. Shape memory effect, thermal expansion and damping property of friction stir processed NiTip/Al composite[J]. Journal of Materials Science and Technology,2016,32(2):162-166. DOI: 10.1016/j.jmst.2015.12.013
|
[1] | XU Jilin, TAO Shouchen, XIAO Qifei, LUO Junming, ZHANG Jianping, LIU Yong. Preparation and damping capacity of Mg/NiTi composites[J]. Acta Materiae Compositae Sinica, 2019, 36(3): 654-660. DOI: 10.13801/j.cnki.fhclxb.20180911.004 |
[2] | SHI Pan, WANG Qingjun, DONG Wenwen, ZHAO Yunmeng, LU Yidong. Damping property of glass fiber reinforced plastics constrained-layer damping composite structure[J]. Acta Materiae Compositae Sinica, 2016, 33(2): 304-309. DOI: 10.13801/j.cnki.fhclxb.20150824.001 |
[3] | LUO Lei, LIANG Sen, ZHANG Qian, LIANG Tianxi. Interlaminar bonding properties of embedded co-cured composite damping structures after moisture absorption treatment[J]. Acta Materiae Compositae Sinica, 2015, 32(2): 608-615. DOI: 10.13801/j.cnki.fhclxb.20140627.001 |
[4] | YANG Xue, WANG Yuansheng, ZHU Jinhua, YU Hongwei. DAMPING PROPERTIES OF THE COMPOSITE STRUCTURES WITHMULTILAYERED DAMPINGMATERIALS[J]. Acta Materiae Compositae Sinica, 2005, 22(3): 175-181. |
[5] | XIE Xianqing, FAN Tongxiang, ZHANG Di, T. Okabe, T. Hirose. FABRICATION AND PROPERTIES OF HIGH DAMPING WOODCERAMICS/MB15 COMPOSITE[J]. Acta Materiae Compositae Sinica, 2003, 20(1): 7-11. |
[6] | LI Ming-jun, SU Yuan, SUN Xiang-chun, WAN Shi-gui, CAO Yi-hua. ANISOTROPIC DESIGN AND ITS DAMPING ANALYSIS OF LAMINATED DAMPED STRUCTURE[J]. Acta Materiae Compositae Sinica, 2002, 19(3): 94-97. |
[7] | LIANG Qing-xiang, REN Yong-sheng. DAMPING PREDICTION OF A SMA FIBER HYBRID COMPOSITE LAMINA[J]. Acta Materiae Compositae Sinica, 2002, 19(2): 85-88. |
[8] | Zhang Xiao-nong, Zhang Di, Wu Ren-jie, Zhu Zhen-gang, Wang Can, Liu Chang-song. EFFECT OF THE ADDITION OF REINFORCEMENTS ON DAMPING CAPACITY OF PURE MAGNESIUM[J]. Acta Materiae Compositae Sinica, 1998, 15(2): 23-26. |
[9] | Zhang Shu-ying, Cao Fu-yang, Chen Yu-yong, Li Qing-chun, Jiang Zu-ling. MICROSTRUCTURE AND DAMPING PROPERTIES OF 2024Al/SiCP METAL MATRIX COMPOSITES PRODUCED BY SPRAY CODEPOSITION[J]. Acta Materiae Compositae Sinica, 1998, 15(1): 88-92. |
[10] | Q. Tan, F. Chen, D. P. He, H. Miyaraha, K. Ogi, M. Sakamoto. DAMPING BEHAVIOR OF GRAPHITE/ALUMINIUM ALLOY COMPOSITES[J]. Acta Materiae Compositae Sinica, 1994, 11(4): 39-43. |
1. |
李友明,景昭,吴增文,李冰垚,刘琛,葛敬冉,梁军. 随机疲劳下复合材料剩余刚度-剩余强度关联模型及寿命预测. 强度与环境. 2024(01): 23-30 .
![]() | |
2. |
马帅,金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用. 材料导报. 2022(S1): 252-256 .
![]() |