Volume 40 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
ZHANG Meirong, ZHU Zengwei, YU Xiaoqi, et al. Research progress of high-efficiency double-junction perovskite tandem solar cells[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 726-740. doi: 10.13801/j.cnki.fhclxb.20220923.002
Citation: ZHANG Meirong, ZHU Zengwei, YU Xiaoqi, et al. Research progress of high-efficiency double-junction perovskite tandem solar cells[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 726-740. doi: 10.13801/j.cnki.fhclxb.20220923.002

Research progress of high-efficiency double-junction perovskite tandem solar cells

doi: 10.13801/j.cnki.fhclxb.20220923.002
Funds:  Special Fund for the “Dual Carbon” Science and Technology Innovation of Jiangsu Province (Industrial Prospect and Key Technology Research Program) ( BE2022021); “Dual Carbon” Science and Technology Innovation of Suzhou (ST202219)
  • Received Date: 2022-08-11
  • Accepted Date: 2022-09-09
  • Rev Recd Date: 2022-09-08
  • Available Online: 2022-09-26
  • Publish Date: 2023-02-15
  • Perovskite tandem solar cells have developed rapidly and become one of the hotspots in the field of solar photovoltaic research. With the optimization of the structure and preparation process, the power conversion efficiency (PCE) of tandem device has been improved greatly. The perovskite/silicon tandem solar cell has been greatly improved and the efficiency has reached 31.3% for monolithic tandems. We sorts out the development of the tandem solar cell with wide bandgap perovskite as the top sub-cell and crystalline silicon cells and other novel medium-narrow bandgap cells (perovskite cells, organic cells, copper indium gallium selenide (CIGS) cells) as the bottom sub-cells in recent years and systematically summarized the key point and challenge in materials, structures, and optoelectronic properties of top cell, intermediate interconnection layers and bottom cells in this review with the hope that provide some ideas for further improving the PCE of tandem cells. The optical and electrical optimization requirements for low-cost and high-efficiency tandem solar cells in the future are also highlighted.

     

  • loading
  • [1]
    王青, 孙頔, 张海霞, 等. 中国光伏行业2021年回顾与2022年展望[J]. 电气时代, 2022(5):20-28.

    WANG Qing, SUN Di, ZHANG Haixia, et al. Review of China's PV industry in 2021 and outlook for 2022[J]. Electric Age,2022(5):20-28(in Chinese).
    [2]
    GU W B, MA T, LI M, et al. A coupled optical-electrical-thermal model of the bifacial photovoltaic module[J]. Applied Energy,2020,258:114075. doi: 10.1016/j.apenergy.2019.114075
    [3]
    MEIER J, FLÜCKIGER R, KEPPNER H, et al. Complete microcrystalline p-i-n solar cell-crystalline or amorphous cell behavior?[J]. Applied Physics Letters,1994,65(7):860-862. doi: 10.1063/1.112183
    [4]
    EPERON G E, HORANTNER M T, SNAITH H J. Metal halide perovskite tandem and multiple-junction photovoltaics[J]. Nature Reviews Chemistry, 2017, 1: 95.
    [5]
    GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (version 59)[J]. Progress in Photovoltaics: Research and Applications, 2022, 30(1): 3-12.
    [6]
    ANAYA M, LOZANO G, CALVO M E, et al. ABX3 perovskites for tandem solar cells[J]. Joule,2017,1(4):769-793. doi: 10.1016/j.joule.2017.09.017
    [7]
    LV S S, GAO W Y, LIU Y H, et al. Stability of Sn-Pb mixed organic-inorganic halide perovskite solar cells: Progress, challenges, and perspectives[J]. Journal of Energy Che-mistry,2022,65:371-404. doi: 10.1016/j.jechem.2021.06.011
    [8]
    AL-ASHOURI A, KÖHNEN E, LI B, et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction[J]. Science,2020,370(6522):1300-1309. doi: 10.1126/science.abd4016
    [9]
    NREL Transforming Energy. Best research-cell efficiency chart: Photovoltaic research[EB/OL]. https://www.nrel.gov/pv/cell-efficiency.html.
    [10]
    BRINKMANN K O, BECKER T, ZIMMERMANN F, et al. Perovskite-organic tandem solar cells with indium oxide interconnect[J]. Nature,2022,604(7905):280-286. doi: 10.1038/s41586-022-04455-0
    [11]
    JOŠT M, KÖHNEN E, AL-ASHOURI A, et al. Perovskite/CIGS tandem solar cells: From certified 24.2% toward 30% and beyond[J]. ACS Energy Letters,2022,7(4):1298-1307. doi: 10.1021/acsenergylett.2c00274
    [12]
    CHEN B, YU Z S, LIU K, et al. Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%[J]. Joule,2019,3(1):177-190. doi: 10.1016/j.joule.2018.10.003
    [13]
    XU J, BOYD C C, YU Z J, et al. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems[J]. Science,2020,367(6482):1097-1104. doi: 10.1126/science.aaz5074
    [14]
    KIM C U, YU J C, JUNG E D, et al. Optimization of device design for low cost and high efficiency planar monolithic perovskite/silicon tandem solar cells[J]. Nano Energy,2019,60:213-221. doi: 10.1016/j.nanoen.2019.03.056
    [15]
    WU Y L, YAN D, PENG J, et al. Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency[J]. Energy & Environmental Science,2017,10(11):2472-2479.
    [16]
    MAZZARELLA L, LIN Y H, KIRNER S, et al. Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%[J]. Advanced Energy Materials,2019,9(14):1803241. doi: 10.1002/aenm.201803241
    [17]
    SAHLI F, WERNER J, KAMINO B A, et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency[J]. Nature Materials,2018,17(9):820-826. doi: 10.1038/s41563-018-0115-4
    [18]
    LIU M, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature,2013,501(7467):395-398. doi: 10.1038/nature12509
    [19]
    CHEN B, YU Z S, MANZOOR S, et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells[J]. Joule,2020,4(4):850-864. doi: 10.1016/j.joule.2020.01.008
    [20]
    SUTTER J, EISENHAUER D, WAGNER P, et al. Tailored nanostructures for light management in silicon heterojunction solar cells[J]. Solar RRL, 2020, 4(12): 2000484-2000491.
    [21]
    SUTTER J, TOCKHORN P, WAGNER P, et al. Periodically nanostructured perovskite/silicon tandem solar cells with power conversion efficiency exceeding 26%[C]//2021 IEEE 48th Photovoltaic Specialists Conference (PVSC). IEEE, 2021: 1034-1036.
    [22]
    SAHLI F, KAMINO B A, WERNER J, et al. Improved optics in monolithic perovskite/silicon tandem solar cells with a nanocrystalline silicon recombination junction[J]. Advanced Energy Materials,2018,8(6):1701609. doi: 10.1002/aenm.201701609
    [23]
    CHEN C W, HSIAO S Y, CHEN C Y, et al. Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells[J]. Journal of Materials Chemistry A,2015,3(17):9152-9159. doi: 10.1039/C4TA05237D
    [24]
    HEO J H, IM S H. CH3NH3PbBr3-CH3NH3PbI3 perovskite-perovskite tandem solar cells with exceeding 2.2 V open circuit voltage[J]. Advanced Materials,2016,28(25):5121-5125. doi: 10.1002/adma.201501629
    [25]
    JIANG F Y, LIU T F, LUO B W, et al. A two-terminal perovskite/perovskite tandem solar cell[J]. Journal of Materials Chemistry A,2016,4(4):1208-1213. doi: 10.1039/C5TA08744A
    [26]
    FORGÁCS D, GIL-ESCRIG L, PÉREZ-DEL-REY D, et al. Efficient monolithic perovskite/perovskite tandem solar cells[J]. Advanced Energy Materials,2017,7(8):1602121. doi: 10.1002/aenm.201602121
    [27]
    ZHAO D W, CHEN C, WANG C L, et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers[J]. Nature Energy,2018,3(12):1093-1100. doi: 10.1038/s41560-018-0278-x
    [28]
    TONG J H, SONG Z N, KIM D H, et al. Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells[J]. Science,2019,364(6439):475-479. doi: 10.1126/science.aav7911
    [29]
    YU Z H, YANG Z B, NI Z Y, et al. Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells[J]. Nature Energy,2020,5(9):657-665. doi: 10.1038/s41560-020-0657-y
    [30]
    LIN R X, XU J, WEI M Y, et al. All-perovskite tandem solar cells with improved grain surface passivation[J]. Nature, 2022, 603: 73-78.
    [31]
    WANG Y R, GU S, LIU G L, et al. Cross-linked hole transport layers for high-efficiency perovskite tandem solar cells[J]. Science China Chemistry,2021,64(11):2025-2034. doi: 10.1007/s11426-021-1059-1
    [32]
    LIN R, XIAO K, QIN Z, et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink[J]. Nature Energy,2019,4(10):864-873. doi: 10.1038/s41560-019-0466-3
    [33]
    MENG L, ZHANG Y, WAN X, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency[J]. Science,2018,361(6407):1094-1098. doi: 10.1126/science.aat2612
    [34]
    AL-ASHOURI A, MAGOMEDOV A, ROSS M, et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells[J]. Energy & Environmental Science,2019,12(11):3356-3369.
    [35]
    HAN Q, HSIEH Y T, MENG L, et al. High-performance perovskite/Cu(In, Ga)Se2 monolithic tandem solar cells[J]. Science,2018,361(6405):904-908. doi: 10.1126/science.aat5055
    [36]
    ZUO L, SHI X L, FU W F, et al. Highly efficient semitransparent solar cells with selective absorption and tandem architecture[J]. Advanced Materials,2019,31(36):1901683. doi: 10.1002/adma.201901683
    [37]
    CHEN W, ZHU Y D, XIU J W, et al. Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer[J]. Nature Energy,2022,7(3):229-237. doi: 10.1038/s41560-021-00966-8
    [38]
    PEÑA-CAMARGO F, CAPRIOGLIO P, ZU F. Halide segregation versus interfacial recombination in bromide-rich wide-gap perovskite solar cells[J]. ACS Energy Letters,2020,5(8):2728-2736. doi: 10.1021/acsenergylett.0c01104
    [39]
    MAHESH S, BALL J M, OLIVER R D J, et al. Revealing the origin of voltage loss in mixed-halide perovskite solar cells[J]. Energy & Environmental Science,2020,13(1):258-267.
    [40]
    XIE Y M, NIU T, YAO Q, et al. Understanding the role of interconnecting layer on determining monolithic perovskite/organic tandem device carrier recombination properties[J]. Journal of Energy Chemistry,2022,71:12-19. doi: 10.1016/j.jechem.2022.03.019
    [41]
    KO Y, PARK H J, LEE C, et al. Recent progress in interconnection layer for hybrid photovoltaic tandems[J]. Adanced Materials,2020,32(51):2002196. doi: 10.1002/adma.202002196
    [42]
    WU X, LIU Y Z, QI F, et al. Improved stability and efficiency of perovskite/organic tandem solar cells with an all-inorganic perovskite layer[J]. Journal of Materials Che-mistry A,2021,9(35):19778-19787. doi: 10.1039/D0TA12286F
    [43]
    TODOROV T K, GERSHON T S, GUNAWAN O, et al. Monolithic perovskite-CIGS tandem solar cells via in situ band gap engineering[J]. Advanced Energy Materials,2015,5(23):1500799. doi: 10.1002/aenm.201500799
    [44]
    HSU C H, HO W H, WEI S Y, et al. Over 14% efficiency of directly sputtered Cu(In, Ga)Se2 absorbers without postselenization by post-treatment of alkali metals[J]. Advanced Energy Materials,2017,7(13):1602571. doi: 10.1002/aenm.201602571
    [45]
    ISHIZUKA S, NISHINAGA J, IIOKA M, et al. Si-doped Cu(In, Ga)Se2 photovoltaic devices with energy conversion efficiencies exceeding 165% without a buffer layer[J]. Advanced Energy Materials,2018,8(11):1702391.
    [46]
    JOŠT M, BERTRAM T, KOUSHIK D, et al. 216%-efficient monolithic perovskite/Cu(In, Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom cell surfaces[J]. ACS Energy Letters,2019,4(2):583-590.
    [47]
    JANG Y H, LEE J M, SEO J W, et al. Monolithic tandem solar cells comprising electrodeposited CuInSe2 and perovskite solar cells with a nanoparticulate ZnO buffer layer[J]. Journal of Materials Chemistry A,2017,5(36):19439-19446. doi: 10.1039/C7TA06163C
    [48]
    UHL A R, RAJAGOPAL A, CLARK J A, et al. Solution-processed low-bandgap CuIn(S, Se)2 absorbers for high-efficiency single-junction and monolithic chalcopyrite-perovskite tandem solar cells[J]. Advanced Energy Materials,2018,8(27):1801254. doi: 10.1002/aenm.201801254
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (2204) PDF downloads(332) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return