LIU Jingyan, CHEN Zihang, JIANG Qiheng, et al. Piezoelectric/triboelectric nanogenerator based on PVDF/SBS flexible composite fiber film[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4022-4029. DOI: 10.13801/j.cnki.fhclxb.20220915.007
Citation: LIU Jingyan, CHEN Zihang, JIANG Qiheng, et al. Piezoelectric/triboelectric nanogenerator based on PVDF/SBS flexible composite fiber film[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4022-4029. DOI: 10.13801/j.cnki.fhclxb.20220915.007

Piezoelectric/triboelectric nanogenerator based on PVDF/SBS flexible composite fiber film

Funds: National Natural Science Foundation of China Regional Innovation and Development Joint Fund Project (210301001018)
More Information
  • Received Date: August 07, 2022
  • Revised Date: August 30, 2022
  • Accepted Date: September 08, 2022
  • Available Online: September 15, 2022
  • Piezoelectric nanogenerators and friction nanogenerators can convert irregular mechanical energy into electrical energy which have the potential to provide independent and continuous power supply for low-power wearable electronic devices. Combining two kinds nanogenerators can integrate the advantages of their electrical output characteristics and improve the performance of nanogenerators. In this paper, polyvinyl fluoride (PVDF) and styrene butadiene styrene block copolymer (SBS) were selected as positive and negative friction materials, respectively. The PVDF/SBS composite fiber films were prepared by electrospinning and were employed to build a piezoelectric/triboelectric nanogenerator. The results show that when the amount of PVDF is 20wt%, the maximum open circuit voltage and short circuit current of the PVDF/SBS piezoelectric/triboelectric nanogenerator can reach 108 V and 0.34 μA, which are 5 and 6 times that of neat SBS sample, respectively. When the devices were fixed on the palm and sole of the shoe, output voltage signal with different amplitude can be obtained by collecting the mechanical energy of human motion, including clapping, walking and running. 64 commercial blue LED beads were lit up when the device were beaten by palm. The device can also detect the instantaneous pressure and the maximum sensitivity can reach 3.685 V·N−1. The experimental results show that PVDF/SBS piezoelectric/triboelectric nanogenerator exhibits a good application prospect in the fields of sensor monitoring and self-energy supply of electronic devices.
  • [1]
    HUANG X, QIN Q, WANG X, et al. Piezoelectric nanogenerator for highly sensitive and synchronous multi-stimuli sensing[J]. ACS Nano,2021,15(12):19783-19792. DOI: 10.1021/acsnano.1c07236
    [2]
    YANG S Y, SENCADAS V, YOU S S, et al. Powering implantable and ingestible electronics[J]. Advanced Functional Materials,2021,31(44):2009289. DOI: 10.1002/adfm.202009289
    [3]
    HU F, CAI Q, LIAO F, et al. Recent advancements in nanogenerators for energy harvesting[J]. Small,2015,11(42):5611-5628. DOI: 10.1002/smll.201501011
    [4]
    WANG X. Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale[J]. Nano Energy,2012,1(1):13-24. DOI: 10.1016/j.nanoen.2011.09.001
    [5]
    WANG Z L, CHEN J, LIN L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors[J]. Energy & Environmental Science,2015,8(8):2250-2282.
    [6]
    NIU S, WANG Z L. Theoretical systems of triboelectric nanogenerators[J]. Nano Energy,2015,14:161-192. DOI: 10.1016/j.nanoen.2014.11.034
    [7]
    WANG X, SONG J, LIU J, et al. Direct-current nanogenerator driven by ultrasonic waves[J]. Science,2007,316(5821):102-105. DOI: 10.1126/science.1139366
    [8]
    WANG Z L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors[J]. ACS Nano,2013,7(11):9533-9557. DOI: 10.1021/nn404614z
    [9]
    RYU H, YOON H J, KIM S W. Hybrid energy harvesters: Toward sustainable energy harvesting[J]. Advanced Materials,2019,31(34):1802898. DOI: 10.1002/adma.201802898
    [10]
    JIANG F, ZHOU X, LV J, et al. Stretchable, breathable, and stable lead-free perovskite/polymer nanofiber composite for hybrid triboelectric and piezoelectric energy harvesting[J]. Advanced Materials,2022,34(17):2200042. DOI: 10.1002/adma.202200042
    [11]
    LIU Y, MO J, FU Q, et al. Enhancement of triboelectric charge density by chemical functionalization[J]. Advanced Functional Materials,2020,30(50):2004714. DOI: 10.1002/adfm.202004714
    [12]
    CHEN J J, QIN S H, LV Q C, et al. Preparation of novel xGNPs/SBS composites with enhanced dielectric constant and thermal conductivity[J]. Advances in Polymer Technology,2018,37(5):1382-1389. DOI: 10.1002/adv.21797
    [13]
    YU S, WANG X, XIANG H, et al. 1-D polymer ternary composites: Understanding materials interaction, percolation behaviors and mechanism toward ultra-high stretchable and super-sensitive strain sensors[J]. Science China Materials,2019,62(7):995-1004. DOI: 10.1007/s40843-018-9402-1
    [14]
    VAN DER HEIJDEN S, DE BRUYCKER K, SIMAL R, et al. Use of triazolinedione click chemistry for tuning the mechanical properties of electrospun SBS-fibers[J]. Macromolecules,2015,48(18):6474-6481. DOI: 10.1021/acs.macromol.5b01569
    [15]
    SUKUMARAN S, CHATBOURI S, ROUXEL D, et al. Recent advances in flexible PVDF based piezoelectric polymer devices for energy harvesting applications[J]. Journal of Intelligent Material Systems and Structures,2020,32(7):746-780.
    [16]
    MI H Y, JING X, ZHENG Q, et al. High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing[J]. Nano Energy,2018,48:327-336. DOI: 10.1016/j.nanoen.2018.03.050
    [17]
    SHI L, JIN H, DONG S, et al. High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting[J]. Nano Energy,2021,80:105599. DOI: 10.1016/j.nanoen.2020.105599
    [18]
    ZHANG Q, WANG T, FAN W, et al. Evaluation of the properties of bitumen modified by SBS copolymers with different styrene-butadiene structure[J]. Journal of Applied Polymer Science,2014,131(12):40398.
    [19]
    YIN J Y, BOARETTI C, LORENZETTI A, et al. Effects of solvent and electrospinning parameters on the morphology and piezoelectric properties of PVDF nanofibrous membrane[J]. Nanomaterials,2022,12(6):962. DOI: 10.3390/nano12060962
    [20]
    SONG Y S, YUN Y, LEE D Y, et al. Effect of PVDF concentration and number of fiber lines on piezoelectric properties of polymeric PVDF biosensors[J]. Fibers and Polymers,2021,22(5):1200-1207. DOI: 10.1007/s12221-021-0509-9
    [21]
    KWON Y H, SHIN S H, KIM Y H, et al. Triboelectric contact surface charge modulation and piezoelectric charge inducement using polarized composite thin film for performance enhancement of triboelectric generators[J]. Nano Energy,2016,25:225-231. DOI: 10.1016/j.nanoen.2016.05.002
    [22]
    LI X, JI D, YU B, et al. Boosting piezoelectric and triboelectric effects of PVDF nanofiber through carbon-coated piezoelectric nanoparticles for highly sensitive wearable sensors[J]. Chemical Engineering Journal,2021,426:130345. DOI: 10.1016/j.cej.2021.130345
  • Related Articles

    [1]QU Zhan, XIA Guangbo, FANG Jian. Research progress of electrospun P(VDF-TrFE) nanofibers in the field of flexible piezoelectric sensing and energy harvesting[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1141-1152. DOI: 10.13801/j.cnki.fhclxb.20230914.001
    [2]WANG Dong, YUE Lili, TANG Chun, JIANG Yan. Preparation,energy harvesting and self-powered sensing application of PDA/rGO hydrogel[J]. Acta Materiae Compositae Sinica.
    [3]LU Jiali, LIU Yanhong, CHEN Haodong, HU Chunkui, FANG Youpeng, CHEN Xiachao. Graphene oxide membranes intercalated with strong polyelectrolytes toward high-output osmotic energy harvesting[J]. Acta Materiae Compositae Sinica.
    [4]LU Peng, WANG Xinyu, LIANG Huan, HU Xin, LU Chunhua. Polyvinylidene fluoride-based composites and their application in energy storage devices[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 4943-4957. DOI: 10.13801/j.cnki.fhclxb.20230509.001
    [5]LIU Shaohui, WANG Jiao, WANG Feifei, WANG Yuan. Energy storage performance of cubic SrTiO3 powder/polyvinylidene fluoride dielectric composite films[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4637-4647. DOI: 10.13801/j.cnki.fhclxb.20221108.001
    [6]ZHAO Zifan, XIONG Juan, DAN Zhigang. Ag nanoparticles modified (K0.5Na0.5)NbO3/PVDF flexible energy harvester and its performance[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2176-2186. DOI: 10.13801/j.cnki.fhclxb.20220525.003
    [7]LIU Junjie, YANG Wenjie, YANG Wei, LU Hongdian. Ordered assembly of MXene based composite films and their applications in energy storage and electromagnetic interference shielding[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2404-2417. DOI: 10.13801/j.cnki.fhclxb.20210408.001
    [8]FU Guozhi, ZHAO Yanqing, SUN Qianqian. Modification mechanisms of polyphosphoric acid and SBS on asphalt[J]. Acta Materiae Compositae Sinica, 2017, 34(6): 1374-1380. DOI: 10.13801/j.cnki.fhclxb.20160905.002
    [9]MA Yan, YANG Yuqiu. Energy absorption mechanism of circular-square irregular section composite tubes[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 243-249. DOI: 10.13801/j.cnki.fhclxb.20140425.001
    [10]CAI Qun, LI Min, LUO Ji, GU Yizhuo, LIU Hongxin, ZHANG Zuoguang. Effects of temperature on interfacial property of carbon fiber / epoxy resin using single fiber fragmentation energy method[J]. Acta Materiae Compositae Sinica, 2011, 28(4): 17-22.
  • Cited by

    Periodical cited type(2)

    1. 罗敬之,金育安,孔浩宇,李光勇,张明华,杜建科. 基于微纳米纤维的多层次微结构设计制备及其传感应用. 复合材料学报. 2024(01): 207-218 . 本站查看
    2. 张松通,顾昊,胡海良,明海. 军用便携式机械能发电技术. 国防科技. 2024(04): 34-42 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (1302) PDF downloads (135) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return