Citation: | LIU Jingyan, CHEN Zihang, JIANG Qiheng, et al. Piezoelectric/triboelectric nanogenerator based on PVDF/SBS flexible composite fiber film[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4022-4029. DOI: 10.13801/j.cnki.fhclxb.20220915.007 |
[1] |
HUANG X, QIN Q, WANG X, et al. Piezoelectric nanogenerator for highly sensitive and synchronous multi-stimuli sensing[J]. ACS Nano,2021,15(12):19783-19792. DOI: 10.1021/acsnano.1c07236
|
[2] |
YANG S Y, SENCADAS V, YOU S S, et al. Powering implantable and ingestible electronics[J]. Advanced Functional Materials,2021,31(44):2009289. DOI: 10.1002/adfm.202009289
|
[3] |
HU F, CAI Q, LIAO F, et al. Recent advancements in nanogenerators for energy harvesting[J]. Small,2015,11(42):5611-5628. DOI: 10.1002/smll.201501011
|
[4] |
WANG X. Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale[J]. Nano Energy,2012,1(1):13-24. DOI: 10.1016/j.nanoen.2011.09.001
|
[5] |
WANG Z L, CHEN J, LIN L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors[J]. Energy & Environmental Science,2015,8(8):2250-2282.
|
[6] |
NIU S, WANG Z L. Theoretical systems of triboelectric nanogenerators[J]. Nano Energy,2015,14:161-192. DOI: 10.1016/j.nanoen.2014.11.034
|
[7] |
WANG X, SONG J, LIU J, et al. Direct-current nanogenerator driven by ultrasonic waves[J]. Science,2007,316(5821):102-105. DOI: 10.1126/science.1139366
|
[8] |
WANG Z L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors[J]. ACS Nano,2013,7(11):9533-9557. DOI: 10.1021/nn404614z
|
[9] |
RYU H, YOON H J, KIM S W. Hybrid energy harvesters: Toward sustainable energy harvesting[J]. Advanced Materials,2019,31(34):1802898. DOI: 10.1002/adma.201802898
|
[10] |
JIANG F, ZHOU X, LV J, et al. Stretchable, breathable, and stable lead-free perovskite/polymer nanofiber composite for hybrid triboelectric and piezoelectric energy harvesting[J]. Advanced Materials,2022,34(17):2200042. DOI: 10.1002/adma.202200042
|
[11] |
LIU Y, MO J, FU Q, et al. Enhancement of triboelectric charge density by chemical functionalization[J]. Advanced Functional Materials,2020,30(50):2004714. DOI: 10.1002/adfm.202004714
|
[12] |
CHEN J J, QIN S H, LV Q C, et al. Preparation of novel xGNPs/SBS composites with enhanced dielectric constant and thermal conductivity[J]. Advances in Polymer Technology,2018,37(5):1382-1389. DOI: 10.1002/adv.21797
|
[13] |
YU S, WANG X, XIANG H, et al. 1-D polymer ternary composites: Understanding materials interaction, percolation behaviors and mechanism toward ultra-high stretchable and super-sensitive strain sensors[J]. Science China Materials,2019,62(7):995-1004. DOI: 10.1007/s40843-018-9402-1
|
[14] |
VAN DER HEIJDEN S, DE BRUYCKER K, SIMAL R, et al. Use of triazolinedione click chemistry for tuning the mechanical properties of electrospun SBS-fibers[J]. Macromolecules,2015,48(18):6474-6481. DOI: 10.1021/acs.macromol.5b01569
|
[15] |
SUKUMARAN S, CHATBOURI S, ROUXEL D, et al. Recent advances in flexible PVDF based piezoelectric polymer devices for energy harvesting applications[J]. Journal of Intelligent Material Systems and Structures,2020,32(7):746-780.
|
[16] |
MI H Y, JING X, ZHENG Q, et al. High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing[J]. Nano Energy,2018,48:327-336. DOI: 10.1016/j.nanoen.2018.03.050
|
[17] |
SHI L, JIN H, DONG S, et al. High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting[J]. Nano Energy,2021,80:105599. DOI: 10.1016/j.nanoen.2020.105599
|
[18] |
ZHANG Q, WANG T, FAN W, et al. Evaluation of the properties of bitumen modified by SBS copolymers with different styrene-butadiene structure[J]. Journal of Applied Polymer Science,2014,131(12):40398.
|
[19] |
YIN J Y, BOARETTI C, LORENZETTI A, et al. Effects of solvent and electrospinning parameters on the morphology and piezoelectric properties of PVDF nanofibrous membrane[J]. Nanomaterials,2022,12(6):962. DOI: 10.3390/nano12060962
|
[20] |
SONG Y S, YUN Y, LEE D Y, et al. Effect of PVDF concentration and number of fiber lines on piezoelectric properties of polymeric PVDF biosensors[J]. Fibers and Polymers,2021,22(5):1200-1207. DOI: 10.1007/s12221-021-0509-9
|
[21] |
KWON Y H, SHIN S H, KIM Y H, et al. Triboelectric contact surface charge modulation and piezoelectric charge inducement using polarized composite thin film for performance enhancement of triboelectric generators[J]. Nano Energy,2016,25:225-231. DOI: 10.1016/j.nanoen.2016.05.002
|
[22] |
LI X, JI D, YU B, et al. Boosting piezoelectric and triboelectric effects of PVDF nanofiber through carbon-coated piezoelectric nanoparticles for highly sensitive wearable sensors[J]. Chemical Engineering Journal,2021,426:130345. DOI: 10.1016/j.cej.2021.130345
|
1. |
罗敬之,金育安,孔浩宇,李光勇,张明华,杜建科. 基于微纳米纤维的多层次微结构设计制备及其传感应用. 复合材料学报. 2024(01): 207-218 .
![]() | |
2. |
张松通,顾昊,胡海良,明海. 军用便携式机械能发电技术. 国防科技. 2024(04): 34-42 .
![]() |