Citation: | SU Xinyue, KONG Cunhui, QING Da, et al. Preparation of Ti3C2/SrTiO3 composites and their photoelectrochemical cathodic protection[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3964-3972. DOI: 10.13801/j.cnki.fhclxb.20220909.004 |
[1] |
赵明月, 裴晓园, 王维, 等. 二维纳米材料/环氧树脂复合涂层在腐蚀防护中的应用[J]. 复合材料学报, 2022, 39(5):2049-2059. DOI: 10.13801/j.cnki.fhclxb.20211009.001
ZHAO Mingyue, PEI Xiaoyuan, WANG Wei, et al. Application of two-dimensional nanomaterial/epoxy composite coating in corrosion protection[J]. Acta Materiae Compositae Sinica,2022,39(5):2049-2059(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20211009.001
|
[2] |
BU Y Y, AO J P. A review on photoelectrochemical cathodic protection semiconductor thin films for metals[J]. Green Energy and Environment,2017,2(4):331-362. DOI: 10.1016/j.gee.2017.02.003
|
[3] |
韩恩厚, 陈建敏, 宿彦京, 等. 海洋工程结构与船舶的腐蚀防护现状与趋势[J]. 中国材料进展, 2014, 33(2):65-76, 113.
HAN Enhou, CHEN Jianmin, SU Yanjing, et al. Corrosion protection techniques of marine engineering structure and ship equipment—Current status and future trend[J]. Materials China,2014,33(2):65-76, 113(in Chinese).
|
[4] |
何萌. RGO/WO3/SrTiO3复合涂层对304不锈钢的光阴极保护性能研究[D]. 北京: 北京理工大学, 2017.
HE Meng. RGO/WO3/SrTiO3 nanocomposite for enhanced photocathodic protection of stainless steel[D]. Beijing: Beijing Institute of Technology, 2017(in Chinese).
|
[5] |
SAJI V S. Review—Photoelectrochemical cathodic protection in the dark: A review of nanocomposite and energy-storing photoanodes[J]. Journal of the Electrochemical Society, 2020, 167(12): 121505.
|
[6] |
许进博, 董晓珠, 赵英娜, 等. 钛酸锶光电化学阴极保护材料研究进展[J]. 中国陶瓷, 2021, 57(2):1-6. DOI: 10.16521/j.cnki.issn.1001-9642.2021.02.001
XU Jinbo, DONG Xiaozhu, ZHAO Yingna, et al. Research progress of SrTiO3 for photoelectrochemical cathodic protection materials[J]. China Ceramics,2021,57(2):1-6(in Chinese). DOI: 10.16521/j.cnki.issn.1001-9642.2021.02.001
|
[7] |
邓洪达. 碳钢表面纳米结构氧化铁薄膜光阴极保护性研究[C]//第十一届全国腐蚀与防护大会论文摘要集. 沈阳: 中国腐蚀与防护学会, 2021: 521-522.
DENG Hongda. Photocathodic protection of nanostructured iron oxide film on the surface of carbon steel[C]//Abstracts of the 11th National Conference on Corrosion and Protection. Shenyang: Chinese Society for Corrosion and Protection, 2021: 521-522(in Chinese).
|
[8] |
CHEN Y, LI X, CAI G N, et al. In situ formation of (001) TiO2/Ti3C2 heterojunctions for enhanced photoelectrochemical detection of dopamine[J]. Electrochemistry Communications,2021,125:106987. DOI: 10.1016/j.elecom.2021.106987
|
[9] |
罗强. 二维层状Ti3C2材料在光催化领域的应用研究现状[J]. 科技视界, 2020, 318(24):144-145. DOI: 10.19694/j.cnki.issn2095-2457.2020.24.55
LUO Qiang. Application research status of two-dimensional layered Ti3C2 materials in the field of photocatalysis[J]. Science & Technology Vision,2020,318(24):144-145(in Chinese). DOI: 10.19694/j.cnki.issn2095-2457.2020.24.55
|
[10] |
QUYEN V T, HA L T T, THANH D M, et al. Advanced synthesis of MXene-derived nanoflower-shaped TiO2@Ti3C2 heterojunction to enhance photocatalytic degradation of rhodamine B[J]. Environmental Technology & Innovation,2020,21:101286.
|
[11] |
ZHU J F, TANG Y, YANG C H, et al. Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance[J]. Journal of the Electrochemical Society,2016,163(5):A785-A791. DOI: 10.1149/2.0981605jes
|
[12] |
KONG C H, SU X Y, QING D, et al. Controlled synthesis of various SrTiO3 morphologies and their effects on photoelectrochemical cathodic protection performance[J]. Ceramics International,2022,48(14):20228-20236. DOI: 10.1016/j.ceramint.2022.03.302
|
[13] |
LI Y J, YIN Z H, JI G R, et al. 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity[J]. Applied Catalysis B: Environmental,2019,246:12-20. DOI: 10.1016/j.apcatb.2019.01.051
|
[14] |
LIU Z Y, ZHOU Y H, YANG L J, et al. Green preparation of in-situ oxidized TiO2/Ti3C2 heterostructure for photocatalytic hydrogen production[J]. Advanced Powder Technology,2021,32(12):4857-4861. DOI: 10.1016/j.apt.2021.10.021
|
[15] |
HUANG K L, LI C H, MENG X C. In-situ construction of ternary Ti3C2 MXene@TiO2/ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution[J]. Journal of Colloid and Interface Science,2020,580:669-680. DOI: 10.1016/j.jcis.2020.07.044
|
[16] |
LI H P, SUN B, GAO T T, et al. Ti3C2 MXene co-catalyst assembled with mesoporous TiO2 for boosting photocatalytic activity of methyl orange degradation and hydrogen production[J]. Chinese Journal of Catalysis,2022,43:461-471. DOI: 10.1016/S1872-2067(21)63915-3
|
[17] |
BAO X L, LI H L, WANG Z Y, et al. TiO2/Ti3C2 as an efficient photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde[J]. Applied Catalysis B: Environmental,2021,286:119885. DOI: 10.1016/j.apcatb.2021.119885
|
[18] |
MA X M, MA Z, ZHANG H G, et al. Interfacial schottky junction of Ti3C2Tx MXene/g-C3N4 for promoting spatial charge separation in photoelectrochemical cathodic protection of steel[J]. Journal of Photochemistry and Photobiology A: Chemistry,2022,426:113772. DOI: 10.1016/j.jphotochem.2022.113772
|
[19] |
ZHANG Y J, XU Z F, LI G Y, et al. Direct observation of oxygen vacancy self-healing on TiO2 photocatalysts for solar water splitting[J]. Angewandte Chemie International Edition,2019,58(40):14229-14233. DOI: 10.1002/anie.201907954
|
[20] |
CHAO P, YANG X F, et al. Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity[J]. ACS Applied Materials & Interfaces,2016,8(9):6051-6060. DOI: 10.1021/acsami.5b11973
|
[21] |
LI P Y, SHEN J, YU X H, et al. Construction of Ti3C2 MXene/O-doped g-C3N4 2D-2D Schottky-junction for enhanced photocatalytic hydrogen evolution[J]. Ceramics International,2019,45(18):24656-24663. DOI: 10.1016/j.ceramint.2019.08.203
|
[22] |
OU Q D, BAO X Z, ZHANG Y N, et al. Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications[J]. Nano Materials Science,2019,1(4):268-287.
|
[23] |
艾子政. 基于能带工程的CdS复合光催化材料的设计、制备及性能研究[D]. 济南: 山东大学, 2020.
AI Zizheng. Design, preparation and properties of Cds composite photocatalytic materials based on energy band engineering[D]. Jinan: Shandong University, 2020(in Chinese).
|
[24] |
董晓珠, 曾雄丰, 王建省, 等. β-FeOOH/TiO2复合薄膜的制备及其光催化性能[J]. 复合材料学报, 2022, 39(3):1173-1179. DOI: 10.13801/j.cnki.fhclxb.20210414.002
DONG Xiaozhu, ZENG Xiongfeng, WANG Jiansheng, et al. Preparation of β-FeOOH/TiO2 composite film and its photocatalytic performance[J]. Acta Materiae Compositae Sinica,2022,39(3):1173-1179(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20210414.002
|
[25] |
崔言娟, 徐红赟, 祝玉鑫, 等. SnO2/C3N4二维复合光催化剂制备及其光催化还原性能[J]. 复合材料学报, 2022, 39(8):3852-3862.
CUI Yanjuan, XU Hongyun, ZHU Yuxin, et al. Preparation and photocatalytic reduction performance of 2D SnO2/C3N4 composite photocatalyst[J]. Acta Materiae Compositae Sinica,2022,39(8):3852-3862(in Chinese).
|
[26] |
郭佳允, 傅炀杰, 张柯杰, 等. g-C3N4/POPs 异质结制备及其可见光催化性能[J]. 复合材料学报, 2023, 40(2):904-910.
GUO Jiayun, FU Yangjie, ZHANG Kejie, et al. Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction[J]. Acta Materiae Compositae Sinica,2023,40(2):904-910(in Chinese).
|
[27] |
许进博, 董晓珠, 孔存辉, 等. SrTiO3/TiO2复合薄膜的制备及其光电化学阴极保护性能[J]. 复合材料学报, 2022, 39(8): 3929-3935.
XU Jinbo, DONG Xiaozhu, KONG Cunhui, et al. Preparation of SrTiO3/TiO2 composite film for photoelectrochemical cathodic protection[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3929-3935(in Chinese).
|
[28] |
ZAGONEL L F, BAURER M, BAILLY A. et al. Orientation-dependent work function of in situ annealed strontium titanate[J]. Journal of Physics: Condensed Matter,2009,21(31):314013. DOI: 10.1088/0953-8984/21/31/314013
|
[29] |
SUSAKI T, SHIGAKI N, MATSUZAKI K, et al. Work function modulation in MgO/Nb:SrTiO3 by utilizing highly nonequilibrium thin-film growth[J]. Physical Review B,2014,90(3):035453. DOI: 10.1103/PhysRevB.90.035453
|
[30] |
WANG L, LI Y K, WU C, et al. Tracking charge transfer pathways in SrTiO3/CoP/Mo2C nanofibers for enhanced photocatalytic solar fuel production[J]. Chinese Journal of Catalysis,2022,43(2):507-518. DOI: 10.1016/S1872-2067(21)63898-6
|
[31] |
TRANG T N Q, DOANH T T, TRINH N T P, et al. Self-assembly of Ag photosensitized SrTiO3 3D binary architectures for highly efficient visible light-driven dyeing wastewater splitting[J]. Journal of Alloys and Compounds,2022,916:165323. DOI: 10.1016/j.jallcom.2022.165323
|
[32] |
KONG C H, QING D, SU X Y, et al. Improved photoelectrochemical cathodic protection properties of a flower-like SrTiO3 photoanode decorated with g-C3N4[J]. Journal of Alloys and Compounds,2022,924:166629. DOI: 10.1016/j.jallcom.2022.166629
|
[33] |
LIN S F, ZHANG N, WANG F C, et al. Carbon vacancy mediated incorporation of Ti3C2 quantum dots in a 3D inverse opal g-C3N4 Schottky junction catalyst for photocatalytic H2O2 production[J]. ACS Sustainable Chemistry & Engineering,2020,9(1):481-488.
|
[34] |
YANG W X, MA G Z, FU Y, et al. Rationally designed Ti3C2 MXene@TiO2/CuInS2 Schottky/S-scheme integrated heterojunction for enhanced photocatalytic hydrogen evolution[J]. Chemical Engineering Journal,2022,429:132381. DOI: 10.1016/j.cej.2021.132381
|