SU Xinyue, KONG Cunhui, QING Da, et al. Preparation of Ti3C2/SrTiO3 composites and their photoelectrochemical cathodic protection[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3964-3972. DOI: 10.13801/j.cnki.fhclxb.20220909.004
Citation: SU Xinyue, KONG Cunhui, QING Da, et al. Preparation of Ti3C2/SrTiO3 composites and their photoelectrochemical cathodic protection[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3964-3972. DOI: 10.13801/j.cnki.fhclxb.20220909.004

Preparation of Ti3C2/SrTiO3 composites and their photoelectrochemical cathodic protection

Funds: Natural Science Foundation-Steel and Iron Foundation of Hebei Province (E2021209002); Tangshan Science and Technology Bureau Project (21130211D)
More Information
  • Received Date: July 20, 2022
  • Revised Date: September 01, 2022
  • Accepted Date: September 01, 2022
  • Available Online: September 12, 2022
  • Due to the shortcomings of strontium titanate (SrTiO3) with large band gap and low separation rate of photogenerating carriers, its photoelectrochemical cathodic protection performance is limited. And in order to solve this problem, SrTiO3 can be modified with the supporting cocatalyst Ti3C2. Firstly, SrTiO3 was prepared by hydrothermal method and Ti3C2 was obtained by etching. Then, Ti3C2/SrTiO3 composites were prepared by mechanical mixing. XRD, XPS, SEM, UV-vis DRS, and PL had characterized the phase structure, chemical state, microscopic morphology, and light absorption performance of the samples. Finally, the photoelectrochemical cathodic protection performance of Ti3C2/SrTiO3 composites to 304 stainless steel (304SS) was analyzed. The results show that Ti3C2/SrTiO3 composites are broadened to absorb visible light. Among them, the photogenerated carrier separation rate of the 15%-Ti3C2/SrTiO3 composite with a mass fraction of 15wt% of Ti3C2 has a higher separation rate and an optical current density of 2.5 μA·cm−2. In the 3.5wt% NaCl solution, after the coupling of 304SS to the composite, its photomotive potential drops by 200 mV under light conditions, which can effectively protect 304SS. After four open and closed light cycle tests, the performance of Ti3C2/SrTiO3 composites are stable.
  • [1]
    赵明月, 裴晓园, 王维, 等. 二维纳米材料/环氧树脂复合涂层在腐蚀防护中的应用[J]. 复合材料学报, 2022, 39(5):2049-2059. DOI: 10.13801/j.cnki.fhclxb.20211009.001

    ZHAO Mingyue, PEI Xiaoyuan, WANG Wei, et al. Application of two-dimensional nanomaterial/epoxy composite coating in corrosion protection[J]. Acta Materiae Compositae Sinica,2022,39(5):2049-2059(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20211009.001
    [2]
    BU Y Y, AO J P. A review on photoelectrochemical cathodic protection semiconductor thin films for metals[J]. Green Energy and Environment,2017,2(4):331-362. DOI: 10.1016/j.gee.2017.02.003
    [3]
    韩恩厚, 陈建敏, 宿彦京, 等. 海洋工程结构与船舶的腐蚀防护现状与趋势[J]. 中国材料进展, 2014, 33(2):65-76, 113.

    HAN Enhou, CHEN Jianmin, SU Yanjing, et al. Corrosion protection techniques of marine engineering structure and ship equipment—Current status and future trend[J]. Materials China,2014,33(2):65-76, 113(in Chinese).
    [4]
    何萌. RGO/WO3/SrTiO3复合涂层对304不锈钢的光阴极保护性能研究[D]. 北京: 北京理工大学, 2017.

    HE Meng. RGO/WO3/SrTiO3 nanocomposite for enhanced photocathodic protection of stainless steel[D]. Beijing: Beijing Institute of Technology, 2017(in Chinese).
    [5]
    SAJI V S. Review—Photoelectrochemical cathodic protection in the dark: A review of nanocomposite and energy-storing photoanodes[J]. Journal of the Electrochemical Society, 2020, 167(12): 121505.
    [6]
    许进博, 董晓珠, 赵英娜, 等. 钛酸锶光电化学阴极保护材料研究进展[J]. 中国陶瓷, 2021, 57(2):1-6. DOI: 10.16521/j.cnki.issn.1001-9642.2021.02.001

    XU Jinbo, DONG Xiaozhu, ZHAO Yingna, et al. Research progress of SrTiO3 for photoelectrochemical cathodic protection materials[J]. China Ceramics,2021,57(2):1-6(in Chinese). DOI: 10.16521/j.cnki.issn.1001-9642.2021.02.001
    [7]
    邓洪达. 碳钢表面纳米结构氧化铁薄膜光阴极保护性研究[C]//第十一届全国腐蚀与防护大会论文摘要集. 沈阳: 中国腐蚀与防护学会, 2021: 521-522.

    DENG Hongda. Photocathodic protection of nanostructured iron oxide film on the surface of carbon steel[C]//Abstracts of the 11th National Conference on Corrosion and Protection. Shenyang: Chinese Society for Corrosion and Protection, 2021: 521-522(in Chinese).
    [8]
    CHEN Y, LI X, CAI G N, et al. In situ formation of (001) TiO2/Ti3C2 heterojunctions for enhanced photoelectrochemical detection of dopamine[J]. Electrochemistry Communications,2021,125:106987. DOI: 10.1016/j.elecom.2021.106987
    [9]
    罗强. 二维层状Ti3C2材料在光催化领域的应用研究现状[J]. 科技视界, 2020, 318(24):144-145. DOI: 10.19694/j.cnki.issn2095-2457.2020.24.55

    LUO Qiang. Application research status of two-dimensional layered Ti3C2 materials in the field of photocatalysis[J]. Science & Technology Vision,2020,318(24):144-145(in Chinese). DOI: 10.19694/j.cnki.issn2095-2457.2020.24.55
    [10]
    QUYEN V T, HA L T T, THANH D M, et al. Advanced synthesis of MXene-derived nanoflower-shaped TiO2@Ti3C2 heterojunction to enhance photocatalytic degradation of rhodamine B[J]. Environmental Technology & Innovation,2020,21:101286.
    [11]
    ZHU J F, TANG Y, YANG C H, et al. Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance[J]. Journal of the Electrochemical Society,2016,163(5):A785-A791. DOI: 10.1149/2.0981605jes
    [12]
    KONG C H, SU X Y, QING D, et al. Controlled synthesis of various SrTiO3 morphologies and their effects on photoelectrochemical cathodic protection performance[J]. Ceramics International,2022,48(14):20228-20236. DOI: 10.1016/j.ceramint.2022.03.302
    [13]
    LI Y J, YIN Z H, JI G R, et al. 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity[J]. Applied Catalysis B: Environmental,2019,246:12-20. DOI: 10.1016/j.apcatb.2019.01.051
    [14]
    LIU Z Y, ZHOU Y H, YANG L J, et al. Green preparation of in-situ oxidized TiO2/Ti3C2 heterostructure for photocatalytic hydrogen production[J]. Advanced Powder Technology,2021,32(12):4857-4861. DOI: 10.1016/j.apt.2021.10.021
    [15]
    HUANG K L, LI C H, MENG X C. In-situ construction of ternary Ti3C2 MXene@TiO2/ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution[J]. Journal of Colloid and Interface Science,2020,580:669-680. DOI: 10.1016/j.jcis.2020.07.044
    [16]
    LI H P, SUN B, GAO T T, et al. Ti3C2 MXene co-catalyst assembled with mesoporous TiO2 for boosting photocatalytic activity of methyl orange degradation and hydrogen production[J]. Chinese Journal of Catalysis,2022,43:461-471. DOI: 10.1016/S1872-2067(21)63915-3
    [17]
    BAO X L, LI H L, WANG Z Y, et al. TiO2/Ti3C2 as an efficient photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde[J]. Applied Catalysis B: Environmental,2021,286:119885. DOI: 10.1016/j.apcatb.2021.119885
    [18]
    MA X M, MA Z, ZHANG H G, et al. Interfacial schottky junction of Ti3C2Tx MXene/g-C3N4 for promoting spatial charge separation in photoelectrochemical cathodic protection of steel[J]. Journal of Photochemistry and Photobiology A: Chemistry,2022,426:113772. DOI: 10.1016/j.jphotochem.2022.113772
    [19]
    ZHANG Y J, XU Z F, LI G Y, et al. Direct observation of oxygen vacancy self-healing on TiO2 photocatalysts for solar water splitting[J]. Angewandte Chemie International Edition,2019,58(40):14229-14233. DOI: 10.1002/anie.201907954
    [20]
    CHAO P, YANG X F, et al. Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity[J]. ACS Applied Materials & Interfaces,2016,8(9):6051-6060. DOI: 10.1021/acsami.5b11973
    [21]
    LI P Y, SHEN J, YU X H, et al. Construction of Ti3C2 MXene/O-doped g-C3N4 2D-2D Schottky-junction for enhanced photocatalytic hydrogen evolution[J]. Ceramics International,2019,45(18):24656-24663. DOI: 10.1016/j.ceramint.2019.08.203
    [22]
    OU Q D, BAO X Z, ZHANG Y N, et al. Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications[J]. Nano Materials Science,2019,1(4):268-287.
    [23]
    艾子政. 基于能带工程的CdS复合光催化材料的设计、制备及性能研究[D]. 济南: 山东大学, 2020.

    AI Zizheng. Design, preparation and properties of Cds composite photocatalytic materials based on energy band engineering[D]. Jinan: Shandong University, 2020(in Chinese).
    [24]
    董晓珠, 曾雄丰, 王建省, 等. β-FeOOH/TiO2复合薄膜的制备及其光催化性能[J]. 复合材料学报, 2022, 39(3):1173-1179. DOI: 10.13801/j.cnki.fhclxb.20210414.002

    DONG Xiaozhu, ZENG Xiongfeng, WANG Jiansheng, et al. Preparation of β-FeOOH/TiO2 composite film and its photocatalytic performance[J]. Acta Materiae Compositae Sinica,2022,39(3):1173-1179(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20210414.002
    [25]
    崔言娟, 徐红赟, 祝玉鑫, 等. SnO2/C3N4二维复合光催化剂制备及其光催化还原性能[J]. 复合材料学报, 2022, 39(8):3852-3862.

    CUI Yanjuan, XU Hongyun, ZHU Yuxin, et al. Preparation and photocatalytic reduction performance of 2D SnO2/C3N4 composite photocatalyst[J]. Acta Materiae Compositae Sinica,2022,39(8):3852-3862(in Chinese).
    [26]
    郭佳允, 傅炀杰, 张柯杰, 等. g-C3N4/POPs 异质结制备及其可见光催化性能[J]. 复合材料学报, 2023, 40(2):904-910.

    GUO Jiayun, FU Yangjie, ZHANG Kejie, et al. Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction[J]. Acta Materiae Compositae Sinica,2023,40(2):904-910(in Chinese).
    [27]
    许进博, 董晓珠, 孔存辉, 等. SrTiO3/TiO2复合薄膜的制备及其光电化学阴极保护性能[J]. 复合材料学报, 2022, 39(8): 3929-3935.

    XU Jinbo, DONG Xiaozhu, KONG Cunhui, et al. Preparation of SrTiO3/TiO2 composite film for photoelectrochemical cathodic protection[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3929-3935(in Chinese).
    [28]
    ZAGONEL L F, BAURER M, BAILLY A. et al. Orientation-dependent work function of in situ annealed strontium titanate[J]. Journal of Physics: Condensed Matter,2009,21(31):314013. DOI: 10.1088/0953-8984/21/31/314013
    [29]
    SUSAKI T, SHIGAKI N, MATSUZAKI K, et al. Work function modulation in MgO/Nb:SrTiO3 by utilizing highly nonequilibrium thin-film growth[J]. Physical Review B,2014,90(3):035453. DOI: 10.1103/PhysRevB.90.035453
    [30]
    WANG L, LI Y K, WU C, et al. Tracking charge transfer pathways in SrTiO3/CoP/Mo2C nanofibers for enhanced photocatalytic solar fuel production[J]. Chinese Journal of Catalysis,2022,43(2):507-518. DOI: 10.1016/S1872-2067(21)63898-6
    [31]
    TRANG T N Q, DOANH T T, TRINH N T P, et al. Self-assembly of Ag photosensitized SrTiO3 3D binary architectures for highly efficient visible light-driven dyeing wastewater splitting[J]. Journal of Alloys and Compounds,2022,916:165323. DOI: 10.1016/j.jallcom.2022.165323
    [32]
    KONG C H, QING D, SU X Y, et al. Improved photoelectrochemical cathodic protection properties of a flower-like SrTiO3 photoanode decorated with g-C3N4[J]. Journal of Alloys and Compounds,2022,924:166629. DOI: 10.1016/j.jallcom.2022.166629
    [33]
    LIN S F, ZHANG N, WANG F C, et al. Carbon vacancy mediated incorporation of Ti3C2 quantum dots in a 3D inverse opal g-C3N4 Schottky junction catalyst for photocatalytic H2O2 production[J]. ACS Sustainable Chemistry & Engineering,2020,9(1):481-488.
    [34]
    YANG W X, MA G Z, FU Y, et al. Rationally designed Ti3C2 MXene@TiO2/CuInS2 Schottky/S-scheme integrated heterojunction for enhanced photocatalytic hydrogen evolution[J]. Chemical Engineering Journal,2022,429:132381. DOI: 10.1016/j.cej.2021.132381
  • Related Articles

    [1]TANG Qi, HU Shiteng, WANG Xuemeng, SUN Jujie, ZONG Chengzhong. Preparation of multi-walled carbon nanotubes@graphene/thermoplastic vulcanizate composites and study on its thermoelectric properties[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3928-3938. DOI: 10.13801/j.cnki.fhclxb.20220919.002
    [2]ZHANG Zijing, LIU Chang, LI Ruhui, WU Chonggang, GONG Xinghou, HU Tao. Preparation and dielectric properties of silanized multi-walled carbon nanotubes/silicone rubber composites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1675-1683. DOI: 10.13801/j.cnki.fhclxb.20191113.004
    [3]LIU Qiaoling, LI Hancai, PENG Yujiao, DONG Xiaobin. Nanomechanical properties of multi-wall carbon nanotubes/cementitious composites[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 952-961. DOI: 10.13801/j.cnki.fhclxb.20190730.004
    [4]ZHAO Liangcheng, LI Bin, WU Sirui, LI Zhongming, LI Qin. Preparation and properties of 3D graphene-multi walled carbon nanotube/thermoplastic polyurethane composites[J]. Acta Materiae Compositae Sinica, 2020, 37(2): 242-251. DOI: 10.13801/j.cnki.fhclxb.20190509.001
    [5]WU Bo, SHAO Faning, HE Wen, LI Huimian, YANG Yang. Dispersion effect of TEMPO oxidized cellulose nanofibrils on multi-walled carbon nanotubes[J]. Acta Materiae Compositae Sinica, 2019, 36(9): 2212-2219. DOI: 10.13801/j.cnki.fhclxb.20181203.002
    [6]WANG Jinlong, WANG Wenyi, SHI Jingyuan, LI Yanling, GAO Ningning, LIU Zhengxin, LIAN Weitao. Preparation and properties of multi-walled carbon nanotubes/poly (vinylidene fluoride) high dielectric constant composites[J]. Acta Materiae Compositae Sinica, 2015, 32(5): 1355-1360. DOI: 10.13801/j.cnki.fhclxb.20150109.001
    [7]SHEN Xiaojun, MENG Lingxuan, FU Shaoyun. Cryogenic mechanical properties of epoxy composites synergistically reinforced by graphene-multi-walled carbon nanotubes[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 21-26. DOI: 10.13801/j.cnki.fhclxb.20140502.002
    [8]QIN Hao, WANG Yang, MENG Shanshan, ZHANG Boming. Preparation and mechanical properties of multi-walled carbon nanotubes/polyethersulphone epoxy composites[J]. Acta Materiae Compositae Sinica, 2014, 31(4): 931-936.
    [9]DI Yingying, REN Penggang, ZHANG Qian. Segregated ultrahigh molecular weight polyethylene composites filled with graphene sheets and hybrid multi-walled carbon nanotubes[J]. Acta Materiae Compositae Sinica, 2012, (4): 36-41.
    [10]WEI Baojuan, ZHENG Weiling, XIAO Tan, WU Ping. Preparation and properties of hybrid functionalized multi-walled carbon nanotube/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2011, 28(5): 27-33.

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return