Volume 40 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
YANG Junchao, CHEN Xiangming, ZOU Peng, et al. Shear stability test and strength prediction of composite laminates[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1707-1717. doi: 10.13801/j.cnki.fhclxb.20220530.002
Citation: YANG Junchao, CHEN Xiangming, ZOU Peng, et al. Shear stability test and strength prediction of composite laminates[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1707-1717. doi: 10.13801/j.cnki.fhclxb.20220530.002

Shear stability test and strength prediction of composite laminates

doi: 10.13801/j.cnki.fhclxb.20220530.002
Funds:  National Key R & D Program of China (2019 YFA0706800); National Natural Science Foundation of China (52005458); Aviation Science Foundation of China (2020 Z055023002)
  • Received Date: 2022-02-28
  • Accepted Date: 2022-05-20
  • Rev Recd Date: 2022-05-10
  • Available Online: 2022-05-31
  • Publish Date: 2023-03-15
  • The shear stability tests of composite laminates without damage and with impact damage were carried out. The post buckling behavior of composite laminates was measured in real time based on digital image correlation (DIC). The test results show that after the introduction of impact damage, the shear buckling waveform and buckling load of composite laminates do not change significantly, and the failure mode changes, the bearing capacity decreased by 9.69%. Then, based on the fracture surface failure theory, a progressive damage failure model of composite materials considering shear nonlinear effect was established, and the shear failure process of composite laminates was simulated. The softened inclusion method was used to simplify the impact damage, and the geometric boundary information of the damage area was directly written into the material model. There was no need to cut the impact damage area, so as to ensure the overall grid quality. Compared with the experimental results, it is found that the model considering shear nonlinearity has no obvious influence on the prediction of buckling load, and has a great influence on the prediction accuracy of post buckling capacity. The error without considering shear nonlinearity can reach more than 20%; The softened inclusion method can effectively simulate the impact damage. The predicted buckling load and failure load errors of composite laminates with impact damage are −3.17% and −1.27% respectively.

     

  • loading
  • [1]
    杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1):1-10. doi: 10.3321/j.issn:1000-3851.2008.01.001

    DU Shanyi, GUAN Zhidong. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica,2008,25(1):1-10(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.001
    [2]
    STEVENS K A, RICCI R, DAVIES G. Buckling and post-buckling of composite structures[J]. Composites,1995,26(3):189-199. doi: 10.1016/0010-4361(95)91382-F
    [3]
    KUMAR N J, BABU P R, PANDU R. Investigations on buckling behaviour of laminated curved composite stiffened panels[J]. Applied Composite Materials,2014,21(2):359-376. doi: 10.1007/s10443-013-9337-4
    [4]
    DEGENHARDT R, CASTRO S G P, ARBELO M A, et al. Future structural stability design for composite space and airframe structures[J]. Thin-Walled Structures,2014,81(7):29-38.
    [5]
    GLISZCZYNSKI A, KUBIAK T. Progressive failure analysis of thin-walled composite columns subjected to uniaxial compression[J]. Composite Structures,2017,169:52-61. doi: 10.1016/j.compstruct.2016.10.029
    [6]
    GENG X, JI F, WANG J, et al. Experimental and numerical investigations of compression stability of stiffened composite panel with ply interleaving[J]. Journal of Composite Materials,2017,51(26):3647-3656. doi: 10.1177/0021998317692397
    [7]
    AKTERSKAIA M, JANSEN E, HALLETT S R, et al. Analysis of skin-stringer debonding in composite panels through a two-way global-local method[J]. Composite Structures,2018,202:1280-1294. doi: 10.1016/j.compstruct.2018.06.064
    [8]
    RAIMOND A, RICCIO A. Inter-laminar and intra-laminar damage evolution in composite panels with skin-stringer debonding under compression[J]. Composites Part B: Engineering,2016,94:139-151. doi: 10.1016/j.compositesb.2016.03.058
    [9]
    谭翔飞, 何宇廷, 冯宇, 等. 航空复合材料加筋板剪切稳定性及后屈曲承载性能[J]. 复合材料学报, 2018, 35(2):320-331.

    TAN Xiangfei, HE Yuting, FEND Yu, et al. Stability and post-buckling carrying capacity of aeronautic composite stiffened panel under shear loading[J]. Acta Materiae Compositae Sinica,2018,35(2):320-331(in Chinese).
    [10]
    汪厚冰, 林国伟, 韩雪冰, 等. 复合材料帽形加筋壁板剪切屈曲性能[J]. 航空学报, 2019, 40(8):126-136.

    WANG Houbing, LIN Guowei, HAN Xuebing, et al. Shear buckling performance of composite hat-stiffened panels[J]. Acta Aeronautica et Astronautica Sinica,2019,40(8):126-136(in Chinese).
    [11]
    李真, 程立平, 李卫平. 复合材料机身帽型长桁加筋壁板剪切失稳及张力场计算[J]. 科学技术与工程, 2021, 21(23):10080-10085. doi: 10.3969/j.issn.1671-1815.2021.23.056

    LI Zhen, CHENG Liping, LI Weiping. Calculation of shear instability and diagonal tension of composite fuselage hat-stringer panel[J]. Science Technology and Engineering,2021,21(23):10080-10085(in Chinese). doi: 10.3969/j.issn.1671-1815.2021.23.056
    [12]
    罗靓, 沈真, 杨胜春. 炭纤维增强树脂基复合材料层合板低速冲击性能实验研究[J]. 复合材料学报, 2008, 25(3):20-24. doi: 10.3321/j.issn:1000-3851.2008.03.004

    LUO Liang, SHEN Zhen, YANG Shengchun. Experimental study on low-velocity impact performance of carbon fiber reinforced composite laminates[J]. Acta Materiae Compositae Sinica,2008,25(3):20-24(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.03.004
    [13]
    CAPUTO F, LUCA A D, SEPE R. Numerical study of the structural behaviour of impacted composite laminates subjected to compression load[J]. Composites Part B Engineering,2015,79:456-465. doi: 10.1016/j.compositesb.2015.05.007
    [14]
    FARDIN E, CHRISTOS K. An efficient approach to determine compression after impact strength of quasi-isotropic composite laminates[J]. Composites Science and Technology,2014,98:28-35. doi: 10.1016/j.compscitech.2014.04.015
    [15]
    DEBSKI H, ROZYLO P, GLISZCZYNSKI A, et al. Numerical models for buckling, postbuckling and failure analysis of pre-damaged thin-walled composite struts subjected to uniform compression[J]. Thin-Walled Structures,2019,139:53-65. doi: 10.1016/j.tws.2019.02.030
    [16]
    LI N, CHEN P H. Prediction of compression-after-edge-impact (CAEI) behaviour in composite panel stiffened with I-shaped stiffeners[J]. Composites Part B,2017,110:402-419. doi: 10.1016/j.compositesb.2016.11.043
    [17]
    SEBASTIAN C, PATTERSON E A. Calibration of a digital image correlation system[J]. Experimental Techniques,2015,39(1):21-29. doi: 10.1111/ext.12005
    [18]
    American Society for Testing and Materials. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039—2017[S]. West Conshohocken: ASTM, 2017.
    [19]
    American Society for Testing and Materials. Standard test method for compressive properties of polymer matrix composite materials using a combined loading compression (CLC) test fixture: ASTM D6641—2016[S]. West Conshohocken: ASTM, 2016.
    [20]
    American Society for Testing and Materials. Standard test method for in-plane shear response of polymer matrix composite materials by tensile test of a ±45° laminate: ASTM D3518—2018[S]. West Conshohocken: ASTM, 2018.
    [21]
    American Society for Testing and Materials. Determination of the mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528—2013[S]. West Conshohocken: ASTM, 2013.
    [22]
    American Society for Testing and Materials. Determination of the mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D7905—2019[S]. West Conshohocken: ASTM, 2019.
    [23]
    HASHIN Z. Fatigue failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics,1980,47:329-334. doi: 10.1115/1.3153664
    [24]
    LI N, GU J F, CHEN P H. Fracture plane based failure criteria for fibre-reinforced composites under three-dimensional stress state[J]. Composite Structures,2018,204:466-474. doi: 10.1016/j.compstruct.2018.07.103
    [25]
    PUCK A, SCHURMANN H. Failure analysis of CFRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology,2002,62(12):1633-1662.
    [26]
    CHIRMAIER F J, WEILAND J, KÄRGER L, et al. A new efficient and reliable algorithm to determine the fracture angle for Puck’ s 3D matrix failure criterion for UD composites[J]. Composites Science and Technology,2014,100:19-25. doi: 10.1016/j.compscitech.2014.05.033
    [27]
    杨凤祥, 陈静芬, 陈善富, 等. 基于剪切非线性三维损伤本构模型的复合材料层合板失效强度预测[J]. 复合材料学报, 2020, 37(9):2207-2222.

    YANG Fengxiang, CHEN Jingfen, CHEN Shanfu, et al. Failure strength prediction of composite laminates using three-dimensional damage constitutive model with nonlinear shear effects[J]. Acta Materiae Compositae Sinica,2020,37(9):2207-2222(in Chinese).
    [28]
    LINDE P, DE BOER H. Modelling of inter-rivet buckling of hybrid composites[J]. Composite Structures,2006,73:221-228. doi: 10.1016/j.compstruct.2005.11.062
    [29]
    OUYANG T, BAO R, SUN W, et al. A fast and efficient numerical prediction of compression after impact (CAI) strength of composite laminates and structures[J]. Thin-Walled Structures,2020,148:106588. doi: 10.1016/j.tws.2019.106588
    [30]
    LIU D C, CAO D F, HU H X, et al. Numerical study on failure behavior of open-hole composite laminates based on LaRC criterion and extended finite element method[J]. Journal of Mechanical Science and Technology,2021,35(3):1037-1047. doi: 10.1007/s12206-021-0217-9
    [31]
    REITINGER R, RAMM E. Buckling and imperfection sensitivity in the optimization of shell structures[J]. Thin-Walled Structures,1995,23:159-177. doi: 10.1016/0263-8231(95)00010-B
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(3)

    Article Metrics

    Article views (1169) PDF downloads(121) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return