Citation: | YANG Junchao, CHEN Xiangming, ZOU Peng, et al. Shear stability test and strength prediction of composite laminates[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1707-1717. doi: 10.13801/j.cnki.fhclxb.20220530.002 |
[1] |
杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1):1-10. doi: 10.3321/j.issn:1000-3851.2008.01.001
DU Shanyi, GUAN Zhidong. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica,2008,25(1):1-10(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.001
|
[2] |
STEVENS K A, RICCI R, DAVIES G. Buckling and post-buckling of composite structures[J]. Composites,1995,26(3):189-199. doi: 10.1016/0010-4361(95)91382-F
|
[3] |
KUMAR N J, BABU P R, PANDU R. Investigations on buckling behaviour of laminated curved composite stiffened panels[J]. Applied Composite Materials,2014,21(2):359-376. doi: 10.1007/s10443-013-9337-4
|
[4] |
DEGENHARDT R, CASTRO S G P, ARBELO M A, et al. Future structural stability design for composite space and airframe structures[J]. Thin-Walled Structures,2014,81(7):29-38.
|
[5] |
GLISZCZYNSKI A, KUBIAK T. Progressive failure analysis of thin-walled composite columns subjected to uniaxial compression[J]. Composite Structures,2017,169:52-61. doi: 10.1016/j.compstruct.2016.10.029
|
[6] |
GENG X, JI F, WANG J, et al. Experimental and numerical investigations of compression stability of stiffened composite panel with ply interleaving[J]. Journal of Composite Materials,2017,51(26):3647-3656. doi: 10.1177/0021998317692397
|
[7] |
AKTERSKAIA M, JANSEN E, HALLETT S R, et al. Analysis of skin-stringer debonding in composite panels through a two-way global-local method[J]. Composite Structures,2018,202:1280-1294. doi: 10.1016/j.compstruct.2018.06.064
|
[8] |
RAIMOND A, RICCIO A. Inter-laminar and intra-laminar damage evolution in composite panels with skin-stringer debonding under compression[J]. Composites Part B: Engineering,2016,94:139-151. doi: 10.1016/j.compositesb.2016.03.058
|
[9] |
谭翔飞, 何宇廷, 冯宇, 等. 航空复合材料加筋板剪切稳定性及后屈曲承载性能[J]. 复合材料学报, 2018, 35(2):320-331.
TAN Xiangfei, HE Yuting, FEND Yu, et al. Stability and post-buckling carrying capacity of aeronautic composite stiffened panel under shear loading[J]. Acta Materiae Compositae Sinica,2018,35(2):320-331(in Chinese).
|
[10] |
汪厚冰, 林国伟, 韩雪冰, 等. 复合材料帽形加筋壁板剪切屈曲性能[J]. 航空学报, 2019, 40(8):126-136.
WANG Houbing, LIN Guowei, HAN Xuebing, et al. Shear buckling performance of composite hat-stiffened panels[J]. Acta Aeronautica et Astronautica Sinica,2019,40(8):126-136(in Chinese).
|
[11] |
李真, 程立平, 李卫平. 复合材料机身帽型长桁加筋壁板剪切失稳及张力场计算[J]. 科学技术与工程, 2021, 21(23):10080-10085. doi: 10.3969/j.issn.1671-1815.2021.23.056
LI Zhen, CHENG Liping, LI Weiping. Calculation of shear instability and diagonal tension of composite fuselage hat-stringer panel[J]. Science Technology and Engineering,2021,21(23):10080-10085(in Chinese). doi: 10.3969/j.issn.1671-1815.2021.23.056
|
[12] |
罗靓, 沈真, 杨胜春. 炭纤维增强树脂基复合材料层合板低速冲击性能实验研究[J]. 复合材料学报, 2008, 25(3):20-24. doi: 10.3321/j.issn:1000-3851.2008.03.004
LUO Liang, SHEN Zhen, YANG Shengchun. Experimental study on low-velocity impact performance of carbon fiber reinforced composite laminates[J]. Acta Materiae Compositae Sinica,2008,25(3):20-24(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.03.004
|
[13] |
CAPUTO F, LUCA A D, SEPE R. Numerical study of the structural behaviour of impacted composite laminates subjected to compression load[J]. Composites Part B Engineering,2015,79:456-465. doi: 10.1016/j.compositesb.2015.05.007
|
[14] |
FARDIN E, CHRISTOS K. An efficient approach to determine compression after impact strength of quasi-isotropic composite laminates[J]. Composites Science and Technology,2014,98:28-35. doi: 10.1016/j.compscitech.2014.04.015
|
[15] |
DEBSKI H, ROZYLO P, GLISZCZYNSKI A, et al. Numerical models for buckling, postbuckling and failure analysis of pre-damaged thin-walled composite struts subjected to uniform compression[J]. Thin-Walled Structures,2019,139:53-65. doi: 10.1016/j.tws.2019.02.030
|
[16] |
LI N, CHEN P H. Prediction of compression-after-edge-impact (CAEI) behaviour in composite panel stiffened with I-shaped stiffeners[J]. Composites Part B,2017,110:402-419. doi: 10.1016/j.compositesb.2016.11.043
|
[17] |
SEBASTIAN C, PATTERSON E A. Calibration of a digital image correlation system[J]. Experimental Techniques,2015,39(1):21-29. doi: 10.1111/ext.12005
|
[18] |
American Society for Testing and Materials. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039—2017[S]. West Conshohocken: ASTM, 2017.
|
[19] |
American Society for Testing and Materials. Standard test method for compressive properties of polymer matrix composite materials using a combined loading compression (CLC) test fixture: ASTM D6641—2016[S]. West Conshohocken: ASTM, 2016.
|
[20] |
American Society for Testing and Materials. Standard test method for in-plane shear response of polymer matrix composite materials by tensile test of a ±45° laminate: ASTM D3518—2018[S]. West Conshohocken: ASTM, 2018.
|
[21] |
American Society for Testing and Materials. Determination of the mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528—2013[S]. West Conshohocken: ASTM, 2013.
|
[22] |
American Society for Testing and Materials. Determination of the mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D7905—2019[S]. West Conshohocken: ASTM, 2019.
|
[23] |
HASHIN Z. Fatigue failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics,1980,47:329-334. doi: 10.1115/1.3153664
|
[24] |
LI N, GU J F, CHEN P H. Fracture plane based failure criteria for fibre-reinforced composites under three-dimensional stress state[J]. Composite Structures,2018,204:466-474. doi: 10.1016/j.compstruct.2018.07.103
|
[25] |
PUCK A, SCHURMANN H. Failure analysis of CFRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology,2002,62(12):1633-1662.
|
[26] |
CHIRMAIER F J, WEILAND J, KÄRGER L, et al. A new efficient and reliable algorithm to determine the fracture angle for Puck’ s 3D matrix failure criterion for UD composites[J]. Composites Science and Technology,2014,100:19-25. doi: 10.1016/j.compscitech.2014.05.033
|
[27] |
杨凤祥, 陈静芬, 陈善富, 等. 基于剪切非线性三维损伤本构模型的复合材料层合板失效强度预测[J]. 复合材料学报, 2020, 37(9):2207-2222.
YANG Fengxiang, CHEN Jingfen, CHEN Shanfu, et al. Failure strength prediction of composite laminates using three-dimensional damage constitutive model with nonlinear shear effects[J]. Acta Materiae Compositae Sinica,2020,37(9):2207-2222(in Chinese).
|
[28] |
LINDE P, DE BOER H. Modelling of inter-rivet buckling of hybrid composites[J]. Composite Structures,2006,73:221-228. doi: 10.1016/j.compstruct.2005.11.062
|
[29] |
OUYANG T, BAO R, SUN W, et al. A fast and efficient numerical prediction of compression after impact (CAI) strength of composite laminates and structures[J]. Thin-Walled Structures,2020,148:106588. doi: 10.1016/j.tws.2019.106588
|
[30] |
LIU D C, CAO D F, HU H X, et al. Numerical study on failure behavior of open-hole composite laminates based on LaRC criterion and extended finite element method[J]. Journal of Mechanical Science and Technology,2021,35(3):1037-1047. doi: 10.1007/s12206-021-0217-9
|
[31] |
REITINGER R, RAMM E. Buckling and imperfection sensitivity in the optimization of shell structures[J]. Thin-Walled Structures,1995,23:159-177. doi: 10.1016/0263-8231(95)00010-B
|