Citation: | XIE Fazhi, ZHANG Daode, YANG Shaohua, et al. Preparation of g-C3N4/Pb composites and application in anode materials for lead carbon batteries[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1541-1551. doi: 10.13801/j.cnki.fhclxb.20220515.001 |
[1] |
FUSINlLO G, ROSESTOLATO D, SCURA F, et al. Lead paste recycling based on conversion into battery grade oxides: Electrochemical tests and industrial production of new batteries[J]. Journal of Power Sources,2018,381:127-135. doi: 10.1016/j.jpowsour.2018.02.019
|
[2] |
HU Y, YANG J, HU J, et al. Lead-carbon batteries: Synthesis of nanostructured PbO@C composite derived from spent lead-acid battery for next-generation lead-carbon battery[J]. Advanced Functional Materials,2018,28(9):1870056. doi: 10.1002/adfm.201870056
|
[3] |
MOSELEY P T, RAND D A J, DAVIDSON A, et al. Understanding the functions of carbon in the negative active-mass of the lead-acid battery: A review of progress[J]. Journal of Energy Storage,2018,19:272-290. doi: 10.1016/j.est.2018.08.003
|
[4] |
HAO H, CHEN K, LIU H, et al. A review of the positive electrode additives in lead-acid batteries[J]. International Journal of Electrochemical Science,2018,13:2329-2340.
|
[5] |
WU Y K, TANG K T. Frequency support by BESS–Review and analysis[J]. Energy Procedia,2019,156:187-191. doi: 10.1016/j.egypro.2018.11.126
|
[6] |
TIAN X, WU Y, HOU P, et al. Environmental impact and economic assessment of secondary lead production: Comparison of main spent lead-acid battery recycling processes in China[J]. Journal of Cleaner Production,2017,144:142-148. doi: 10.1016/j.jclepro.2016.12.171
|
[7] |
TUNDORN P, CHAILAPAKUL O, TANTAVICHET N. Polyaspartate as a gelled electrolyte additive to improve the performance of the gel valve-regulated lead-acid batteries under 100% depth of discharge and partial-state-of charge conditions[J]. Journal of Solid State Electrochemistry,2016,20(3):801-811. doi: 10.1007/s10008-015-3117-z
|
[8] |
KAMENEV Y, SHTOMPEL G, OSTAPENKO E, et al. Influence of the active mass particle suspension in electrolyte upon corrosion of negative electrode of a lead-acid battery[J]. Journal of Power Sources,2014,257:181-185. doi: 10.1016/j.jpowsour.2014.01.111
|
[9] |
MOSELEY P T, RAND D A J, MONAHOV B. Designing lead-acid batteries to meet energy and power requirements of future automobiles[J]. Journal of Power Sources,2012,219:75-79. doi: 10.1016/j.jpowsour.2012.07.040
|
[10] |
RAND D A J, MOSELEY P T. Lead-acid battery fundamentals[M]//Lead-Acid Batteries for Future Automobiles. Amsterdam: Elsevier, 2017: 97-132.
|
[11] |
NETHAJI E L, SRINIVAS K, MURTHY K S, et al. Effect of properties of carbon materials on performance of VRLA batteries[J]. Journal of Energy and Power Engineering,2015,9:1029-1035.
|
[12] |
HUANG T, OU W, FENG B, et al. Researches on current distribution and plate conductivity of valve-regulated lead-acid batteries[J]. Journal of Power Sources,2012,210:7-14. doi: 10.1016/j.jpowsour.2012.02.086
|
[13] |
MOSELEY P T, BONNET B, COOPER A, et al. Lead-acid battery chemistry adapted for hybrid electric vehicle duty[J]. Journal of Power Sources,2007,174(1):49-53. doi: 10.1016/j.jpowsour.2007.06.065
|
[14] |
MOSELEY P T, NELSON R F, HOLLENKAMP A F. The role of carbon in valve-regulated lead-acid battery technology[J]. Journal of Power Sources,2006,157(1):3-10. doi: 10.1016/j.jpowsour.2006.02.031
|
[15] |
MOSELEY P T. Consequences of including carbon in the negative plates of valve-regulated lead-acid batteries exposed to high-rate partial-state-of-charge operation[J]. Journal of Power Sources,2009,191(1):134-138. doi: 10.1016/j.jpowsour.2008.08.084
|
[16] |
MOSELEY P T, RAND D A J, PETERS K. Enhancing the performance of lead-acid batteries with carbon–In pursuit of an understanding[J]. Journal of Power Sources,2015,295:268-274. doi: 10.1016/j.jpowsour.2015.07.009
|
[17] |
PAVLOV D, NIKOLOV P, ROGACHEV T. Influence of expander components on the processes at the negative plates of lead-acid cells on high-rate partial-state-of-charge cycling. Part II. Effect of carbon additives on the processes of charge and discharge of negative plates[J]. Journal of Power Sources,2010,195(14):4444-4457. doi: 10.1016/j.jpowsour.2009.12.132
|
[18] |
PAVLOV D, NIKOLOV P, ROGACHEV T. Influence of carbons on the structure of the negative active material of lead-acid batteries and on battery performance[J]. Journal of Power Sources,2011,196(11):5155-5167. doi: 10.1016/j.jpowsour.2011.02.014
|
[19] |
PAVLOV D, NIKOLOV P. Capacitive carbon and electrochemical lead electrode systems at the negative plates of lead-acid batteries and elementary processes on cycling[J]. Journal of Power Sources,2013,242:380-399. doi: 10.1016/j.jpowsour.2013.05.065
|
[20] |
WANG L, ZHANG H, CAO G, et al. Effect of activated carbon surface functional groups on nano-lead electrodepo-sition and hydrogen evolution and its applications in lead-carbon batteries[J]. Electrochimica Acta,2015,186:654-663. doi: 10.1016/j.electacta.2015.11.007
|
[21] |
WU Q, CHEN M, WANG S, et al. Preparation of sandwich-like ternary hierarchical nanosheets manganese dioxide/polyaniline/reduced graphene oxide as electrode material for supercapacitor[J]. Chemical Engineering Journal,2016,304:29-38.
|
[22] |
TONG P, ZHAO R, ZHANG R, et al. Characterization of lead (Ⅱ)-containing activated carbon and its excellent perfor-mance of extending lead-acid battery cycle life for high-rate partial-state-of-charge operation[J]. Journal of Power Sources,2015,286:91-102. doi: 10.1016/j.jpowsour.2015.03.150
|
[23] |
XIE J, HU Y, WU X, et al. Positive effects of highly graphitized porous carbon loaded with PbO on cycle performance of negative plates of lead-acid batteries[J]. Applied Sciences,2021,11(18):8469. doi: 10.3390/app11188469
|
[24] |
JIANG Z, WANG T, SONG L, et al. High over-potential nitrogen-doped activated carbon towards hydrogen evolution inhibition in sulfuric acid solution[J]. Journal of Materials Science: Materials in Electronics,2018,29(16):14170-14179. doi: 10.1007/s10854-018-9550-x
|
[25] |
WANG F, HU C, LIAN J, et al. Phosphorus-doped activated carbon as a promising additive for high performance lead carbon batteries[J]. RSC Advances,2017,7(7):4174-4178. doi: 10.1039/C6RA26093D
|
[26] |
WANG H, LIU Z, LIANG Q, et al. A facile method for preparation of doped-N carbon material based on sisal and application for lead-carbon battery[J]. Journal of Cleaner Production, 2018, 197: 332-338.
|
[27] |
BANERJEE A, ZIV B, SHILINA Y, et al. Single-wall carbon nanotube doping in lead-acid batteries: A new horizon[J]. ACS Applied Materials & Interfaces,2017,9(4):3634-3643.
|
[28] |
SARAVANAN M, GANESAN M, AMBALAVANAN S. An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery[J]. Journal of Power Sources,2014,251:20-29. doi: 10.1016/j.jpowsour.2013.10.143
|
[29] |
XIANG J, DING P, ZHANG H, et al. Beneficial effects of activated carbon additives on the performance of negative lead-acid battery electrode for high-rate partial-state-of-charge operation[J]. Journal of Power Sources,2013,241:150-158. doi: 10.1016/j.jpowsour.2013.04.106
|
[30] |
FERNANDEZ M, VALENCIANO J, TRINIDAD F, et al. The use of activated carbon and graphite for the development of lead-acid batteries for hybrid vehicle applications[J]. Journal of Power Sources,2010,195(14):4458-4469. doi: 10.1016/j.jpowsour.2009.12.131
|
[31] |
WANG F, HU C, ZHOU M, et al. Research progresses of cathodic hydrogen evolution in advanced lead-acid batteries[J]. Science Bulletin,2016,61(6):451-458. doi: 10.1007/s11434-016-1023-0
|
[32] |
YIN J, LIN N, ZHANG W, et al. Highly reversible lead-carbon battery anode with lead grafting on the carbon surface[J]. Journal of Energy Chemistry,2018,27(6):1674-1683. doi: 10.1016/j.jechem.2018.03.002
|
[33] |
NAKAMURA K, SHIOMI M, TAKAHASHI K, et al. Failure modes of valve-regulated lead/acid batteries[J]. Journal of Power Sources,1996,59(1-2):153-157. doi: 10.1016/0378-7753(95)02317-8
|
[34] |
LAM L T, CEYLAN H, HAIGH N P, et al. Influence of residual elements in lead on oxygen- and hydrogen-gassing rates of lead-acid batteries[J]. Journal of Power Sources, 2010, 195(14): 4494-4512.
|
[35] |
PARSONS R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen[J]. Transactions of the Faraday Society,1958,54:1053-1063. doi: 10.1039/tf9585401053
|
[36] |
NORSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. The Journal of Physical Chemistry B,2004,108(46):17886-17892. doi: 10.1021/jp047349j
|
[37] |
YANG X, QIAN F, ZOU G, et al. Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation[J]. Applied Catalysis B: Environmental,2016,193:22-35. doi: 10.1016/j.apcatb.2016.03.060
|
[38] |
杨绍斌, 郭鑫瑶, 董伟, 等. 盐酸活化对石墨相氮化碳(g-C3N4)结构和g-C3N4/S 锂硫电池正极复合材料性能的影响[J]. 复合材料学报, 2019, 36(1):254-260.
YANG S B, GOU X Y, DONG W, et al. Effect of hydrochloric acid activation on the structure of graphitic phase carbon nitride (g-C3N4) and the performance of g-C3N4/S lithium-sulfur battery cathode composites[J]. Acta Material Compositae Sinica,2019,36(1):254-260(in Chinese).
|
[39] |
JIANG G, GENG K, WU Y, et al. High photocatalytic performance of ruthenium complexes sensitizing g-C3N4/TiO2 hybrid in visible light irradiation[J]. Applied Catalysis B: Environmental,2018,227:366-375.
|