Volume 40 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
WANG Liwei, YU Xueying, HAN Jianmei, et al. Preparation and properties of cryogels composed of agarose and nanoparticles of tannic acid and amino-capped poly(propylene glycol)[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1649-1654. doi: 10.13801/j.cnki.fhclxb.20220512.003
Citation: WANG Liwei, YU Xueying, HAN Jianmei, et al. Preparation and properties of cryogels composed of agarose and nanoparticles of tannic acid and amino-capped poly(propylene glycol)[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1649-1654. doi: 10.13801/j.cnki.fhclxb.20220512.003

Preparation and properties of cryogels composed of agarose and nanoparticles of tannic acid and amino-capped poly(propylene glycol)

doi: 10.13801/j.cnki.fhclxb.20220512.003
Funds:  National Natural Science Foundation of China (31971255)
  • Received Date: 2022-03-28
  • Accepted Date: 2022-05-02
  • Rev Recd Date: 2022-04-18
  • Available Online: 2022-05-13
  • Publish Date: 2023-03-15
  • Here a new type of agarose-based composite cryogel has been developed using a facile and green method. By introducing nanoparticles derived of polyphenol tannic acid (TA) and amine-terminated poly(propylene glycol) (D400) to agarose, the TA-D400 nanoparticles/agarose composite cryogel (ATD) was successfully prepared and the effect of TA-D400 complexation time on the properties of the resulting cryogels was studied. The ATD cryogels prepared by the freezing method have an interconnected macroporous structure, and the nanoparticles are embedded in the agarose matrix. The storage modulus of the composite cryogels ATD-0 and ATD-24 with complexation times of 0 h and 24 h is 1.8 kPa and 0.8 kPa respectively. The introduction of nanoparticles increases the mechanical properties of agarose cryogel. The ATD gels are antioxidative, shown by their excellent 1, 1-diphenyl-2-picrohydrazine (DPPH) free radical scavenging ability and total antioxidant capacity based on the ferric ion reducing/antioxidant power (FRAP) assay result. In vitro cytoprotection experiments show that the ATD gels can protect fibroblasts from H2O2-induced oxidative damage. Furthermore, the ATD gels support the adhesion of fibroblasts, pre-osteoblasts, and primary cortical neurons. In summary, by rationally introducing TA-D400 nanoparticles, we have developed a multifunctional cryogel with innate ability for cell adhesion and antioxidation, providing a new option of macroporous materials as potential scaffolds for tissue engineering.

     

  • loading
  • [1]
    NORMAND V, LOOTENS D L, AMICI E, et al. New insight into agarose gel mechanical properties[J]. Biomacromolecules,2000,1(4):730-738. doi: 10.1021/bm005583j
    [2]
    YAZDI M K, TAGHIZADEH A, TAGHIZADEH M, et al. Agarose-based biomaterials for advanced drug delivery[J]. Journal of Controlled Release,2020,326:523-543. doi: 10.1016/j.jconrel.2020.07.028
    [3]
    ZARRINTAJ P, MANOUCHEHRI S, AHMADI Z, et al. Agarose-based biomaterials for tissue engineering[J]. Carbohydrate Polymers,2018,187:66-84. doi: 10.1016/j.carbpol.2018.01.060
    [4]
    MEMIC A, COLOMBANI T, EGGERMONT L J, et al. Latest advances in cryogel technology for biomedical applications[J]. Advanced Therapeutics,2019,2(4):1800114. doi: 10.1002/adtp.201800114
    [5]
    BRUŽAUSKAITĖ I, BIRONAITĖ D, BAGDONAS E, et al. Scaffolds and cells for tissue regeneration: Different scaffold pore sizes—Different cell effects[J]. Cytotechnology,2016,68(3):355-369. doi: 10.1007/s10616-015-9895-4
    [6]
    SU T, ZHANG M Y, ZENG Q U, et al. Mussel-inspired agarose hydrogel scaffolds for skin tissue engineering[J]. Bioactive Materials,2021,6(3):579-588. doi: 10.1016/j.bioactmat.2020.09.004
    [7]
    ZHANG Z, WANG X L, WANG Y T, et al. Rapid-forming and self-healing agarose-based hydrogels for tissue adhesives and potential wound dressings[J]. Biomacromolecules,2018,19(3):980-988. doi: 10.1021/acs.biomac.7b01764
    [8]
    CAO Z, GILBERT R J, HE W. Simple agarose-chitosan gel composite system for enhanced neuronal growth in three dimensions[J]. Biomacromolecules,2009,10(10):2954-2959. doi: 10.1021/bm900670n
    [9]
    VALKO M, LEIBFRITZ D, MONCOL J, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. The International Journal of Biochemistry & Cell Biology,2007,39(1):44-84.
    [10]
    李冬冬, 蔡超, 杨萌, 等. 基于单宁酸的功能材料研究进展[J]. 高分子通报, 2017(9):10-20.

    LI D D, CAI C, YANG M, et al. Progress in the application of tannic acid to the functional materials[J]. Polymer Bulletin,2017(9):10-20(in Chinese).
    [11]
    彭雪银, 李学锋, 李荣哲, 等. 多重氢键增强的带乙烯基二氨基三嗪水凝胶的记忆性能与药物的选择吸附[J]. 复合材料学报, 2021, 38(2):470-478.

    PENG X Y, LI X F, LI R Z, et al. Shape memory properties and selective adsorption of drugs of multiple hydrogen-bondsreinforced hydrogels with vinyl diaminotriazine[J]. Acta Materiae Compositae Sinica,2021,38(2):470-478(in Chinese).
    [12]
    WAN Y F, HAN J, CHENG F, et al. Green preparation of hierarchically structured hemostatic epoxy-amine sponge[J]. Chemical Engineering Journal,2020,397:125445. doi: 10.1016/j.cej.2020.125445
    [13]
    TOCCHIO A, MARTELLO F, TAMPLENIZZA M, et al. RGD-mimetic poly(amidoamine) hydrogel for the fabrication of complex cell-laden micro constructs[J]. Acta Biomaterialia,2015,18:144-154. doi: 10.1016/j.actbio.2015.02.017
    [14]
    韩健美, 夏雨祥, 程昉, 等. 聚醚胺ED900-单宁酸构建表面微结构化复合涂层及其细胞相容性的研究[J]. 复合材料学报, 2023, 43(1):396-406.

    HAN J M, XIA Y X, CHENG F, et al. Construction of microstructured composite coatings based on polyetheramine ED900-tannic acid and cytocompatibility study[J]. Acta Materiae Compositae Sinica,2023,43(1):396-406(in Chinese).
    [15]
    XIA Y X, SUN X N, HAN J M, et al. Complexation of tannic acid with polyoxypropylene diamine in water and application for the preparation of hierarchically structured functional surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,627:127201. doi: 10.1016/j.colsurfa.2021.127201
    [16]
    GUO Y, QU Y, YU J, et al. A chitosan-vitamin C based injectable hydrogel improves cell survival under oxidative stress[J]. International Journal of Biological Macromolecules,2022,202:102-111. doi: 10.1016/j.ijbiomac.2022.01.030
    [17]
    YAN C, POCHAN D J. Rheological properties of peptide-based hydrogels for biomedical and other applications[J]. Chemical Society Reviews,2010,39(9):3528-3540. doi: 10.1039/b919449p
    [18]
    李泓, 张静, 陈可, 等. 羟基磷灰石纳米纤维增强甲基丙烯酸酐改性明胶复合水凝胶的制备及性能[J]. 复合材料学报, 2020, 37(10):2572-2581.

    LI H, ZHANG J, CHEN K, et al. Preparation and properties of hydroxyapatite nanofibers reinforced gelatin hydrogel modified by methacrylic anhydride composite hydrogel[J]. Acta Materiae Compositae Sinica,2020,37(10):2572-2581(in Chinese).
    [19]
    ZHAO H B, LIU M, ZHANG Y J, et al. Nanocomposite hydrogels for tissue engineering applications[J]. Nanoscale,2020,12(28):14976-14995. doi: 10.1039/D0NR03785K
    [20]
    夏雨祥. 单宁酸-端氨基聚氧化丙烯的复合及性能研究[D]. 大连: 大连理工大学, 2021.

    XIA Y X. Study of complexation of tannic acid with amine-terminated polypropylene glycol and its properties[D]. Dalian: Dalian University of Technology, 2021(in Chinese).
    [21]
    CHANG H, HUANG C, LIN K, et al. Effect of surface potential on NIH3 T3 cell adhesion and proliferation[J]. The Journal of Physical Chemistry C,2014,118(26):14464-14470. doi: 10.1021/jp504662c
    [22]
    MORIN E A, TANG S C, ROGERS K L, et al. Facile use of cationic hydrogel particles for surface modification of planar substrates toward multifunctional neural permissive surfaces: An in vitro investigation[J]. ACS Applied Materials & Interfaces,2016,8(8):5737-5745.
    [23]
    ZHAO X, LANG Q, YILDIRIMER L, et al. Photocrosslinkable gelatin hydrogel for epidermal tissue engineering[J]. Advanced Healthcare Materials,2016,5(1):108-118. doi: 10.1002/adhm.201500005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (900) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return