Volume 40 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
ZHANG Wenxiao, ZUO Xingwei, QU Lijun, et al. Research progress of flexible electronic devices based on conductive fibers[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 688-709. doi: 10.13801/j.cnki.fhclxb.20220511.002
Citation: ZHANG Wenxiao, ZUO Xingwei, QU Lijun, et al. Research progress of flexible electronic devices based on conductive fibers[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 688-709. doi: 10.13801/j.cnki.fhclxb.20220511.002

Research progress of flexible electronic devices based on conductive fibers

doi: 10.13801/j.cnki.fhclxb.20220511.002
Funds:  Natural Science Foundation of Shandong Province of China (ZR2020 QE081); Shandong Province Key Research and Development Plan (Major Scientifc and Technological Innovation Projects) (2019 JZZY010340; 2019 JZZY010335; 2019 GGX102022); China Postdoctoral Science Foundation (2020 M671994)
  • Received Date: 2022-03-16
  • Accepted Date: 2022-05-03
  • Rev Recd Date: 2022-04-26
  • Available Online: 2022-05-12
  • Publish Date: 2023-02-15
  • Flexible electronics have excellent flexibility, enabling seamless integration with clothing, and have great potential in various practical wearable applications. One-dimensional fibrous electronic devices have become a research hotspot in the field of smart wearables due to their excellent flexibility, weavability and comfort. First, the research progress of one-dimensional stretchable electrodes for fiber-like flexible electronic devices is reviewed, and then introduced the high-performance one-dimensional fibrous flexible electronics representative during the preparation of conductive material, manufacturing technology, as well as the further application of the one-dimensional flexible fiber become various main preparation methods for all kinds of electronic devices. Finally, we think critically about the opportunities and challenges of one-dimensional wikis smart wearable electronics.

     

  • loading
  • [1]
    LOU Z, WANG L, JIANG K, et al. Reviews of wearable healthcare systems: Materials, devices and system integration[J]. Materials Science and Engineering: Reports,2020,140:100523. doi: 10.1016/j.mser.2019.100523
    [2]
    SOURI H, BHATTACHARYYA D. Highly stretchable multifunctional wearable devices based on conductive cotton and wool fabrics[J]. ACS Applied Materials & Interfaces,2018,10(24):20845-20853.
    [3]
    ZHAO J, FU Y, XIAO Y, et al. A naturally integrated smart textile for wearable electronics applications[J]. Advanced Materials Technologies,2019,5(1):1900781.
    [4]
    SENEVIRATNE S, HU Y, NGUYEN T, et al. A survey of wearable devices and challenges[J]. IEEE Communications Surveys & Tutorials,2017,19(4):2573-2620.
    [5]
    TEYMOURIAN H, PARRILLA M, SEMPIONATTO J R, et al. Wearable electrochemical sensors for the monitoring and screening of drugs[J]. ACS Sensors,2020,5(9):2679-2700. doi: 10.1021/acssensors.0c01318
    [6]
    RAHMAN M T, RANA S M S, SALAUDDIN M, et al. Biomechanical energy-driven hybridized generator as a universal portable power source for smart/wearable electro-nics[J]. Advanced Energy Materials,2020,10(12):1903663. doi: 10.1002/aenm.201903663
    [7]
    LEE J, LLERENA Z B, WOO J, et al. Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: Materials, fabrications, and applications[J]. Advanced Materials,2020,32(5):e1902532. doi: 10.1002/adma.201902532
    [8]
    LIU X, MIAO J, FAN Q, et al. Smart textile based on 3D stretchable silver nanowires/MXene conductive networks for personal healthcare and thermal management[J]. ACS Applied Materials & Interfaces, 2021, 13(47): 56607-56619.
    [9]
    DUAN Z, XU L J. Dual band wristband antenna with metal frame loaded for biomedical applications[J]. Microwave and Optical Technology Letters,2017,59(9):2155-2159. doi: 10.1002/mop.30690
    [10]
    ABED H, BELLEMARE-ROUSSEAU S, BELANGER-HUOT B, et al. A wire-free and fiber-based smart T-shirt for real-time breathing rate monitoring[J]. IEEE Sensors Journal,2022,22(5):4463-4471. doi: 10.1109/JSEN.2021.3139032
    [11]
    YAO S, SWETHA P, ZHU Y. Nanomaterial-enabled wearable sensors for healthcare[J]. Advanced Healthcare Materials,2018,7(1):1700889. doi: 10.1002/adhm.201700889
    [12]
    LI X, HU H, HUA T, et al. Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors[J]. Nano Research,2018,11(11):5799-5811. doi: 10.1007/s12274-018-2043-7
    [13]
    PACCHIEROTTI C, SINCLAIR S, SOLAZZI M, et al. Wearable haptic systems for the fingertip and the hand: Taxonomy, review, and perspectives[J]. IEEE Transactions on Haptics, 2017, 10(4): 580-600.
    [14]
    SHI Q, DONG B, HE T, et al. Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and internet of things[J]. InfoMat,2020,2(6):1131-1162. doi: 10.1002/inf2.12122
    [15]
    刘旭华, 苗锦雷, 曲丽君, 等. 用于可穿戴智能纺织品的复合导电纤维研究进展[J]. 复合材料学报, 2021, 38(1):67-83.

    LIU Xuhua, MIAO Jinlei, QU Lijun, et al. Research progress of composite conductive fibers for wearable smart textiles[J]. Journal of Composite Materials,2021,38(1):67-83(in Chinese).
    [16]
    JAYATHILAKA W, QI K, QIN Y, et al. Significance of nanomaterials in wearables: A review on wearable actuators and sensors[J]. Advanced Materials,2019,31(7):e1805921. doi: 10.1002/adma.201805921
    [17]
    WU Y, LI X, ZHAO H, et al. Recent advances in transition metal carbides and nitrides (MXenes): Characteristics, environmental remediation and challenges[J]. Chemical Engineering Journal,2021,418:129296. doi: 10.1016/j.cej.2021.129296
    [18]
    WANG C, XIA K, WANG H, et al. Advanced carbon for flexible and wearable electronics[J]. Advanced Materials,2019,31(9):e1801072. doi: 10.1002/adma.201801072
    [19]
    LI G, HONG G, DONG D, et al. Multiresponsive graphene-aerogel-directed phase-change smart fibers[J]. Advanced Materials,2018,30(30):e1801754. doi: 10.1002/adma.201801754
    [20]
    GAO Y, GUO F, CAO P, et al. Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultra-stretchable conductor and strain sensor[J]. ACS Nano,2020 , 14 (3):3442-3450.
    [21]
    ZHONG J W, ZHANG Y, ZHONG Q, et al. Fiber-based generator for wearable electronics and mobile medication[J]. ACS Nano,2014,8(6):6273-6280.
    [22]
    ABDULLAH H, AHMED K, ALAM M S, et al. High sensiti-vity refractive index sensor based on triple layer MgF2-gold-MgF2 coated nano metal films photonic crystal fiber[J]. Optik,2021,241:166950. doi: 10.1016/j.ijleo.2021.166950
    [23]
    LIAO J, YANG M, ZHANG W, et al. Spider silk-inspired universal strategy: Directional patching of one-dimensional nanomaterial-based flexible transparent electrodes for smart flexible electronics[J]. Chemical Engineering Jour-nal,2020,389:123663. doi: 10.1016/j.cej.2019.123663
    [24]
    ZHANG M, YAO S, RAO W, et al. Transformable soft liquid metal micro/nanomaterials[J]. Materials Science and Engineering R: Reports,2019,138:1-35. doi: 10.1016/j.mser.2019.03.001
    [25]
    GUO R, SUN X, YAO S, et al. Semi-liquid-metal-(Ni-EGaIn)-based LTRA conformable electronic tattoo[J]. Advanced Materials Technologies,2019,4(8):1900183. doi: 10.1002/admt.201900183
    [26]
    KIM J, KUMAR R, BANDODKAR A J, et al. Advanced materials for printed wearable electrochemical devices: A review[J]. Advanced Electronic Materials,2016,3(1):1600260.
    [27]
    CHENG Y, WANG R, SUN J, et al. Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires[J]. ACS Nano,2015,9(4):3887-3895. doi: 10.1021/nn5070937
    [28]
    LEE J, SHIN S, LEE S, et al. Correction to highly sensitive multifilament fiber strain sensors with ultrabroad sensing range for textile electronics[J]. ACS Nano,2018,12(9):9634. doi: 10.1021/acsnano.8b05295
    [29]
    ZHOU J, TIAN G, JIN G, et al. Buckled conductive polymer ribbons in elastomer channels as stretchable fiber conductor[J]. Advanced Functional Materials,2019,30(5):1907316.
    [30]
    YI F, REN H, SHAN J, et al. Wearable energy sources based on 2D materials[J]. Chemical Society Reviews, 2018, 47(9): 3152-3188.
    [31]
    ETMAN A S, HALIM J, ROSEN J. Mixed MXenes: Mo1.33CTz and Ti3C2Tz freestanding composite films for energy storage[J]. Nano Energy,2021,88:106271.
    [32]
    SHIN H, EOM W, LEE K H, et al. Highly electroconductive and mechanically strong Ti3C2Tx MXene fibers using a deformable MXene gel[J]. ACS Nano,2021,15(2):3320-3329. doi: 10.1021/acsnano.0c10255
    [33]
    ZHANG X, ZHANG Z, ZHOU Z. MXene-based materials for electrochemical energy storage[J]. Journal of Energy Chemistry,2018,27(1):73-85. doi: 10.1016/j.jechem.2017.08.004
    [34]
    ZHANG J, SEYEDIN S, GU Z, et al. MXene: A potential candidate for yarn supercapacitors[J]. Nanoscale,2017,9(47):18604-18608. doi: 10.1039/C7NR06619H
    [35]
    WANG L, TIAN M, ZHANG Y, et al. Helical core-sheath elastic yarn-based dual strain/humidity sensors with MXene sensing layer[J]. Journal of Materials Science,2020,55(14):6187-6194. doi: 10.1007/s10853-020-04425-9
    [36]
    WANG Z, HUANG Y, SUN J, et al. Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection[J]. ACS Applied Materials & Interfaces,2016,8(37):24837-24843.
    [37]
    谢晓旭, 王彦, 诸静, 等. 基于夹心结构的碳纳米管/石墨烯复合柔性导电纤维的制备及其应用[J]. 现代化工, 2020, 40(10):188-192.

    XIE Xiaoxu, WANG Yan, ZHU Jing, et al. Fabrication and application of carbon nanotubes/graphene composite flexible conductive fibers based on sandwich structure[J]. Modern Chemical Industry,2020,40(10):188-192(in Chinese).
    [38]
    ZHANG B, LEI J, QI D, et al. Stretchable conductive fibers based on a cracking control strategy for wearable electro-nics[J]. Advanced Functional Materials,2018,28(29):1801683. doi: 10.1002/adfm.201801683
    [39]
    WOO J, LEE H, YI C, et al. Ultrastretchable helical conductive fibers using percolated Ag nanoparticle networks encapsulated by elastic polymers with high durability in omnidirectional deformations for wearable electronics[J]. Advanced Functional Materials,2020,30(29):1910026. doi: 10.1002/adfm.201910026
    [40]
    YANG Z, ZHAI Z, SONG Z, et al. Conductive and elastic 3D helical fibers for use in washable and wearable electro-nics[J]. Advanced Materials,2020,32(10):e1907495. doi: 10.1002/adma.201907495
    [41]
    FOROUGHI J, SPINKS G M, ANTIOHOS D, et al. Highly conductive carbon nanotube-graphene hybrid yarn[J]. Advanced Functional Materials,2014,24(37):5859-5865. doi: 10.1002/adfm.201401412
    [42]
    SEYEDIN S, UZUN S, LEVITT A, et al. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles[J]. Advanced Functional Materials,2020,30(12):1910504. doi: 10.1002/adfm.201910504
    [43]
    HU X, TIAN M, XU T, et al. Multiscale disordered porous fibers for self-sensing and self-cooling integrated smart sportswear[J]. ACS Nano,2020,14(1):559-567. doi: 10.1021/acsnano.9b06899
    [44]
    LU C, PARK S, RICHNER T J, et al. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits[J]. Science Advances,2017,3(3):1600955. doi: 10.1126/sciadv.1600955
    [45]
    WANG L, TIAN M, QI X, et al. Customizable textile sensors based on helical core-spun yarns for seamless smart garments[J]. Langmuir,2021,37(10):3122-3129. doi: 10.1021/acs.langmuir.0c03595
    [46]
    NING C, DONG K, CHENG R, et al. Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing[J]. Advanced Functional Materials,2020,31(4):2006679.
    [47]
    CHEN G, WANG H, GUO R, et al. Superelastic EGaIn composite fibers sustaining 500% tensile strain with superior electrical conductivity for wearable electronics[J]. ACS Applied Materials & Interfaces,2020,12(5):6112-6118.
    [48]
    ZHENG L, ZHU M, WU B, et al. Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing[J]. Science Advances, 2021, 7(22): 239-257.
    [49]
    DU X, TIAN M, SUN G, et al. Self-powered and self-sensing energy textile system for flexible wearable applications[J]. ACS Applied Materials & Interfaces,2020,12(50):55876-55883.
    [50]
    LI M, LI Z, YE X, et al. Tendril-inspired 900% ultrastretching fiber-based Zn-ion batteries for wearable energy textiles[J]. ACS Applied Materials & Interfaces,2021,13(14):17110-17117.
    [51]
    CHEN S, LIU H, LIU S, et al. Transparent and waterproof ionic liquid-based fibers for highly durable multifunctional sensors and strain-insensitive stretchable conductors[J]. ACS Applied Materials & Interfaces,2018,10(4):4305-4314.
    [52]
    HUANG Y, HU H, HUANG Y, et al. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles[J]. ACS Nano, 2015, 9(5): 4766-4775.
    [53]
    SHENG M, WANG W, LI L, et al. All-in-one wearable electronics design: Smart electrochromic liquid-crystal-clad fibers without external electrodes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,630:127535. doi: 10.1016/j.colsurfa.2021.127535
    [54]
    SHI X, ZUO Y, ZHAI P, et al. Large-area display textiles integrated with functional systems[J]. Nature,2021,591(7849):240-245. doi: 10.1038/s41586-021-03295-8
    [55]
    CHENG Y, WANG R, CHAN K H, et al. A biomimetic conductive tendril for ultrastretchable and integratable electronics, muscles, and sensors[J]. ACS Nano,2018,12(4):3898-3907. doi: 10.1021/acsnano.8b01372
    [56]
    CHOI B, LEE J, HAN H, et al. Highly conductive fiber with waterproof and self-cleaning properties for textile electronics[J]. ACS Applied Materials & Interfaces,2018,10(42):36094-36101.
    [57]
    GUAN F, XIE Y, WU H, et al. Silver nanowire-bacterial cellulose composite fiber-based sensor for highly sensitive detection of pressure and proximity[J]. ACS Nano,2020,14(11):15428-15439. doi: 10.1021/acsnano.0c06063
    [58]
    SUN F, TIAN M, SUN X, et al. Stretchable conductive fibers of ultrahigh tensile strain and stable conductance enabled by a worm-shaped graphene microlayer[J]. Nano Letters,2019,19(9):6592-6599. doi: 10.1021/acs.nanolett.9b02862
    [59]
    LIU Z F, FANG S, MOURA F A, et al. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles[J]. Science,2015,349(6246):400-404. doi: 10.1126/science.aaa7952
    [60]
    LAN L, JIANG C, YAO Y, et al. A stretchable and conductive fiber for multifunctional sensing and energy harvesting[J]. Nano Energy,2021,84:105954.
    [61]
    ZHAO Z, XIA K, HOU Y, et al. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: From conductive polymers[J]. Chemical Society Reviews, 2021, 50(22): 12702-12743.
    [62]
    ZHANG X, WANG Q. Fibrous and flexible electrodes comprising hierarchical nanostructure graphene for supercapacitors[J]. Micro & Nano Letters,2020,15(14):992-996.
    [63]
    ZHANG J, SEYEDIN S, QIN S, et al. Highly conductive Ti3C2Tx MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors[J]. Small,2019,15(8):e1804732. doi: 10.1002/smll.201804732
    [64]
    HUANG Y, IP W S, LAU Y Y, et al. Weavable, conductive yarn-based NiCo//Zn textile battery with high energy density and rate capability[J]. ACS Nano,2017,11(9):8953-8961. doi: 10.1021/acsnano.7b03322
    [65]
    HE J, LU C, JIANG H, et al. Scalable production of high-performing woven lithium-ion fibre batteries[J]. Nature,2021,597(7874):57-63. doi: 10.1038/s41586-021-03772-0
    [66]
    LIAO M, WANG C, HONG Y, et al. Industrial scale production of fibre batteries by a solution-extrusion method[J]. Nature Nanotechnology, 2022 , 17(4): 35058651.
    [67]
    MA Y, OUYANG J, RAZA T, et al. Flexible all-textile dual tactile-tension sensors for monitoring athletic motion during taekwondo[J]. Nano Energy,2021,85:105941. doi: 10.1016/j.nanoen.2021.105941
    [68]
    JIN L, XIAO X, DENG W, et al. Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators[J]. Nano Letters,2020,20(9):6404-6411. doi: 10.1021/acs.nanolett.0c01987
    [69]
    COOPER C B, ARUTSELVAN K, LIU Y, et al. Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers[J]. Advanced Functional Materials,2017,27(20):1605630. doi: 10.1002/adfm.201605630
    [70]
    ZHU Z, LIU C, JIANG F, et al. Flexible fiber-shaped hydrogen gas sensor via coupling palladium with conductive polymer gel fiber[J]. Journal of Hazardous Materials,2021,411:125008. doi: 10.1016/j.jhazmat.2020.125008
    [71]
    ZHAI W, LI X, XIA Q, et al. Multi-functional and flexible helical fiber sensor for micro-deformation detection, temperature sensing and ammonia gas monitoring[J]. Composites Part B: Engineering,2021,211:108621. doi: 10.1016/j.compositesb.2021.108621
    [72]
    CHEN S, LOU Z, CHEN D, et al. Polymer-enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves[J]. Advanced Materials Technologies,2016,1(7):1600136. doi: 10.1002/admt.201600136
    [73]
    LEE S, SHIN S, LEE S, et al. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics[J]. Advanced Functional Materials,2015,25(21):3114-3121. doi: 10.1002/adfm.201500628
    [74]
    CHENG Y, WANG R, SUN J, et al. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion[J]. Advanced Materials,2015,27(45):7365-7371. doi: 10.1002/adma.201503558
    [75]
    CAO Z, WANG R, HE T, et al. Interface-controlled conduc-tive fibers for wearable strain sensors and stretchable conducting wires[J]. ACS Applied Materials & Interfaces,2018,10(16):14087-14096. doi: 10.1021/acsami.7b19699
    [76]
    WANG C, LIU Y, QU X, et al. Ultra-stretchable and fast self-healing ionic hydrogel in cryogenic environments for artificial nerve fiber[J]. Advanced Materials,2022,34(16):e2105416.
    [77]
    WANG C, QU X, ZHENG Q, et al. Stretchable, self-healing, and skin-mounted active sensor for multipoint muscle function assessment[J]. ACS Nano,2021,15(6):10130-10140. doi: 10.1021/acsnano.1c02010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (1553) PDF downloads(177) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return