Volume 40 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
BAO Chengpeng, ZHOU Yajie, DONG Lan, et al. Research progress in thermoelectric properties of PEDOT∶PSS and its nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 649-664. doi: 10.13801/j.cnki.fhclxb.20220505.001
Citation: BAO Chengpeng, ZHOU Yajie, DONG Lan, et al. Research progress in thermoelectric properties of PEDOT∶PSS and its nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 649-664. doi: 10.13801/j.cnki.fhclxb.20220505.001

Research progress in thermoelectric properties of PEDOT∶PSS and its nanocomposites

doi: 10.13801/j.cnki.fhclxb.20220505.001
  • Received Date: 2022-03-10
  • Accepted Date: 2022-04-23
  • Rev Recd Date: 2022-04-19
  • Available Online: 2022-05-05
  • Publish Date: 2023-02-15
  • In recent years, with the aggravation of energy crisis, thermoelectric materials which can directly convert heat energy to electric energy have attracted much attention. Among many types of thermoelectric materials, organic-inorganic hybrid nanocomposites have unique advantages. Compared with inorganic materials, organic materials have the advantages of low cost, light weight, good mechanical flexibility and low thermal conductivity. Once different types of addictions are introduced to form nanocomposites, additional phonon-interface scattering can further reduce the thermal conductivity. Moreover, carrier filtering effect induced by band mismatch between organic and inorganic materials enhances Seebeck coefficient. Therefore, abundance works have proved that organic-inorganic hybrid nanocomposites have the potential to obtain promoted thermoelectric figure of merit (ZT), and have bright application prospects in micro-thermoelectric refrigeration devices, flexible wearable power generation devices, temperature sensors and other fields. This paper focuses on the thermoelectric properties of poly(3, 4-ethylenedioxythiophene)∶poly(styrene sulfonate) (PEDOT∶PSS) thermoelectric materials and its nanocomposites. The physical methods and chemical reagent modification methods to improve the thermoelectric properties of PEDOT∶PSS are reviewed. The research progress of the thermoelectric properties of PEDOT∶PSS based nanocomposites with different types of inorganic fillers is further discussed. The inherent mechanisms of the improvement of thermoelectric properties of PEDOT∶PSS based nanocomposites are also revealed in detail.


  • loading
  • [1]
    PARK T, PARK C, KIM E, et al. Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips[J]. Energy & Environmental Science,2013,6(3):788-792.
    EL-SHAMY A G. New free-standing and flexible PVA/carbon quantum dots (CDots) nanocomposite films with promising power factor and thermoelectric power applications[J]. Materials Science in Semiconductor Processing,2019,100:245-254. doi: 10.1016/j.mssp.2019.04.004
    EL-SHAMY A G. Novel hybrid nanocomposite based on poly(vinyl alcohol)/carbon quantum dots/fullerene (PVA/CQDs/C60) for thermoelectric power applications[J]. Composites Part B: Engineering,2019,174:106993. doi: 10.1016/j.compositesb.2019.106993
    TAN G, STOUMPOS C C, WANG S, et al. Subtle roles of Sb and S in regulating the thermoelectric properties of N-type PbTe to high performance[J]. Advanced Energy Materials,2017,7(18):1700099.
    WITTING I T, CHASAPIS T C, RICCI F, et al. The thermoelectric properties of bismuth telluride made for efficient thermoelectric cooling or temperature management uses Bi2Te3[J]. Advanced Energy Materials,2019,5(6):1800904.
    VISHWAKARMA A, CHAUHAN N S, BHARDWAJ R, et al. Melt-spun SiGe nano-alloys: Microstructural engineering towards high thermoelectric efficiency[J]. Journal of Electronic Materials,2021,50(1):364-374. doi: 10.1007/s11664-020-08560-6
    JIANG Q L, LIU C C, XU J K, et al. Improved thermoelectric performance of PEDOT : PSS films prepared by polar-solvent vapor annealing method[J]. Journal of Materials Science Materials in Electronics,2013,24(11):4240-4246. doi: 10.1007/s10854-013-1391-z
    DISALSO F J. Thermoelectric cooling and power generation[J]. Science,1999,285(5427):703-705.
    POMOGAILO S I, DZHARDIMALIEVA G I, ERSHOVA V A, et al. Synthesis and properties of Rh6- and Os3-cluster-containing monomers and their copolymers with styrene[J]. Macromolecular Symposia,2002,186(1):155-160. doi: 10.1002/1521-3900(200208)186:1<155::AID-MASY155>3.0.CO;2-J
    CHEN Y N, ZHAO Y, LIANG Z Q. Solution processed orga-nic thermoelectrics: Towards flexible thermoelectric modules[J]. Energy & Environmental Science,2015,8:401-422.
    ZHANG Q, SUN Y M, XU W, et al. Organic thermoelectric materials: Emerging green energy materials converting heat to electricity directly and efficiently[J]. Advanced Materials,2015,26(40):6829-6851.
    WANG H, YU C. Organic thermoelectrics: Materials preparation, performance optimization, and device integration[J]. Joule,2019,3(1):53-80. doi: 10.1016/j.joule.2018.10.012
    王斌, 邹贺隆, 刘雨, 等. 有机热电材料研究进展[J]. 南昌航空大学学报(自然科学版), 2020, 34(112):36-47.

    WANG Bin, ZOU Helong, LIU Yu, et al. Research progress of organic thermoelectric materials[J]. Journal of Nanchang Hangkong University (Natural Science Edition),2020,34(112):36-47(in Chinese).
    FAN Z, DU D H, OUYANG J Y, et al. Polymer films with ultrahigh thermoelectric properties arising from significant seebeck coefficient enhancement by ion accumulation on surface[J]. Nano Energy,2018,51:481-488. doi: 10.1016/j.nanoen.2018.07.002
    FAN Z, OUYANG J Y. Thermoelectric properties of PEDOT: PSS[J]. Advanced Electronic Materials,2019,5(11):1800769. doi: 10.1002/aelm.201800769
    GROENENDAAL L B, JONAS F, FREITAG D, et al. Poly(3, 4-ethylenedioxythiophene) and its derivatives: Past, present, and future[J]. Advanced Materials,2000,7(7):481-494.
    MENG Q F, JIANG Q L, CAI K F, et al. Preparation and thermoelectric properties of PEDOT∶ PSS coated Te nano-rod/PEDOT∶PSS composite films[J]. Organic Electronics,2019,64:79-85. doi: 10.1016/j.orgel.2018.10.010
    SHI H, LIU C C, XU J K, et al. Effective approach to improve the electrical conductivity of PEDOT∶PSS: A review[J]. Advanced Electronic Materials,2015,4(1):1500017.
    LEE C S, KIM J Y, LEE D E, et al. Flexible and transparent organic film speaker by using highly conducting PEDOT/PSS as electrode[J]. Synthetic Metals,2003,139(2):457-461. doi: 10.1016/S0379-6779(03)00199-1
    LIN Y J, YANG F M, HUANG C Y, et al. Increasing the work function of poly(3, 4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) by ultraviolet irradiation[J]. Applied Physics Letters,2007,91(9):092127. doi: 10.1063/1.2777147
    LIM J Y, CHO S, KIM H, et al. Optimum thermoelectric performance of bismuth-antimony-telluride alloy/PEDOT∶PSS nanocomposites prepared by a novel redox process[J]. ACS Applied Energy Materials,2019,2(11):8219-8228. doi: 10.1021/acsaem.9b01702
    FRIEDEL B, KEIVANIDIS P E, BRENNER T J K, et al. Effects of layer thickness and annealing of PEDOT∶PSS layers in organic photodetectors[J]. Macromolecules,2009,42(17):6741-6747. doi: 10.1021/ma901182u
    BENOR A, TAKIZAWA S, CHEN P, et al. Dramatic efficiency improvement in phosphorescent organic light-emitting diodes with ultraviolet-ozone treated poly(3, 4-ethylenedioxythiophene) : poly(styrenesulfonate)[J]. Applied Physics Letters,2009,94(19):193301.
    CHONAN Y, SATO N, KOMIYAMA T, et al. Enhancement of thermoelectric properties of PEDOT∶PSS films by applying an alternating electric field during preparation[J]. Journal of Electronic Materials,2019,48(6):3854-3858. doi: 10.1007/s11664-019-07150-5
    KIM J Y, JUNG J H, JOO J, et al. Enhancement of electrical conductivity of poly(3, 4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents[J]. Synthetic Metals,2002,126(2-3):311-316. doi: 10.1016/S0379-6779(01)00576-8
    JIANG F X, XU J K, LU B Y, et al. Thermoelectric performance of poly(3, 4-ethylenedioxythiophene)∶poly(styrenesulfonate)[J]. Chinese Physics Letters,2008,25:2202-2205. doi: 10.1088/0256-307X/25/6/076
    刘聪聪. 聚3, 4-二氧乙撑噻吩∶聚苯乙烯磺酸及其复合材料的热电性能研究[D]. 南昌: 江西科技师范大学, 2011.

    LIU Congcong. Thermoelectric properties of poly(3, 4-dioxyethiophene)∶polystyrene sulfonic acid and its compo-sites[D]. Nanchang: Jiangxi Science and Technology Normal University, 2011(in Chinese).
    KIM G H, SHAO L, ZHANG K, et al. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency[J]. Nature Materials,2013,12(8):719-723. doi: 10.1038/nmat3635
    CHAO Y, WILHITE A, GONG X, et al. Enhanced thermoelectric properties of poly(3, 4-ethylenedioxythiophene)∶poly(styrenesulfonate) by binary secondary dopants[J]. ACS Applied Materials & Interfaces,2015,7(17):8984-8989.
    FAN Z, DU D H, OUYANG J Y, et al. Significant enhancement in the thermoelectric properties of PEDOT∶PSS films through a treatment with organic solutions of inorganic salts[J]. ACS Applied Materials & Interfaces,2016,8(35):23204-23211.
    CRUZ I, REYES M, LOPEZ-SANDOVAL R. Formation of polystyrene sulfonic acid surface structures on poly(3, 4-ethylenedioxythiophene)∶poly(styrenesulfonate) thin films and the enhancement of its conductivity by using sulfuric acid[J]. Thin Solid Films,2013,531(15):385-390.
    XIA Y J, OUYANG J Y. Significant conductivity enhancement of conductive poly(3, 4-ethylenedioxythiophene)∶poly(styrenesulfonate) films through a treatment with organic carboxylic acids and inorganic acids[J]. ACS Applied Materials & Interfaces,2010,2(2):474-483.
    MENGISTIE D A, IBRAHEM M A, WANG P C, et al. Highly conductive PEDOT∶PSS treated with formic acid for ITO-free polymer solar cells[J]. ACS Applied Materials & Interfaces,2014,6(4):2292-2299.
    MENGISTIE D A, CHEN C H, BOOPATHI K M, et al. Enhanced thermoelectric performance of PEDOT∶PSS flexible bulky papers by treatment with secondary dopants[J]. ACS Applied Materials & Interfaces,2015,7(1):94-100.
    LIU C C, SHI H, XU J K, et al. Improved thermoelectric properties of PEDOT∶PSS nanofilms treated with oxalic acid[J]. Journal of Electronic Materials,2015,44(6):1791-1795. doi: 10.1007/s11664-014-3557-8
    KIM N, KEE S, LEE S H, et al. Transparent electrodes: Highly conductive PEDOT∶PSS nanofibrils induced by solution-processed crystallization[J]. Advanced Materials,2014,26(14):2268-2272. doi: 10.1002/adma.201304611
    FAN Z, LI P C, OUYANG J Y, et al. Significantly enhanced thermoelectric properties of PEDOT∶PSS films through sequential post-treatments with common acids and bases[J]. Advanced Energy Materials,2016,7(8):1602116.
    XU S, HONG M, SHI X L, et al. High-performance PEDOT∶PSS flexible thermoelectric materials and their devices by triple post-treatments[J]. Chemistry of Materials,2019,31(14):5238-5244. doi: 10.1021/acs.chemmater.9b01500
    SHI H, LIU C C, JIANG Q L, et al. Three novel electrochemical electrodes for the fabrication of conducting polymer/SWCNTs layered nanostructures and their thermoelectric performance[J]. Nanotechnology,2015,25(24):245401.
    CAO X L, ZHANG M, YANG Y, et al. Thermoelectric PEDOT∶PSS sheet/SWCNTs composites films with layered structure[J]. Composites Communications,2021,27:100869. doi: 10.1016/j.coco.2021.100869
    WEI S S, HUANG X, DENG L, et al. Facile preparations of layer-like and honeycomb-like films of poly(3, 4-ethylenedioxythiophene)/carbon nanotube composites for thermoelectric application[J]. Composites Science and Technology,2021,208:108759. doi: 10.1016/j.compscitech.2021.108759
    DU Y, SHI Y L, MENG Q F, et al. Preparation and thermoelectric properties of flexible SWCNT/PEDOT∶PSS compo-site film[J]. Synthetic Metals,2020,261:116318. doi: 10.1016/j.synthmet.2020.116318
    LEE W, KANG Y H, LEE J Y, et al. Improving the thermoelectric power factor of CNT/PEDOT∶PSS nanocomposite films by ethylene glycol treatment[J]. RSC Advances,2016,6(58):53339-53344. doi: 10.1039/C6RA08599G
    LIU S Q, LI H, HE C B. Simultaneous enhancement of electrical conductivity and seebeck coefficient in organic thermoelectric SWNT/PEDOT∶PSS nanocomposites[J]. Carbon,2019,149:25-32. doi: 10.1016/j.carbon.2019.04.007
    CHUNG S H, DONG H K, KIM H, et al. Thermoelectric properties of PEDOT∶PSS and acid-treated SWCNT composite films[J]. Materials Today Communications,2019,23:100867.
    DENG W J, DENG L, LI Z P, et al. Synergistically boosting thermoelectric performance of PEDOT∶PSS/SWCNT composites via the ion-exchange effect and promoting SWCNT dispersion by the ionic liquid[J]. ACS Applied Materials & Interfaces,2021,13(10):12131-12140.
    ZHANG Z, CHEN G M, WANG H F, et al. Template-directed in situ polymerization preparation of nanocomposites of PEDOT∶PSS-coated multi-walled carbon nanotubes with enhanced thermoelectric property[J]. Chemistry—An Asian Journal,2015,10(1):149-153. doi: 10.1002/asia.201403100
    EL-SHAMY A G. Acido-treatment of PEDOT∶PSS/carbon dots (CDots) nanocomposite films for high thermoelectric power factor performance and generator[J]. Materials Chemistry and Physics,2020,257(1):123762.
    LIU Y Q, WENG B, RAZAL J M, et al. High-performance flexible all-solid-state supercapacitor from large free-standing graphene-PEDOT/PSS films[J]. Scientific Reports,2015,5:17045. doi: 10.1038/srep17045
    PARK M U, SONG M, LEE S M, et al. Fabrication process of bilayer RGO/PEDOT∶PSS film for flexible transparent conductive electrode[J]. Journal of Nanoscience & Nanotechnology,2018,18(9):6147-6151.
    SARABIA-RIQUELME R, RAMOS-FERNANDEZ G, MARTIN-GULLON I, et al. Synergistic effect of graphene oxide and wet-chemical hydrazine/deionized water solution treatment on the thermoelectric properties of PEDOT∶PSS sprayed films[J]. Synthetic Metals,2016,222:330-337. doi: 10.1016/j.synthmet.2016.11.013
    LIU Y X, LIU H H, WANG J P, et al. Thermoelectric behavior of PEDOT∶PSS/CNT/graphene composites[J]. Journal of Polymer Engineering,2017,38(4):381-389.
    MYINT M T Z, INOUE H, ICHIMURA S, et al. Influence of pressure of nitrogen gas on structure and thermoelectric properties of acid-treated PEDOT∶PSS films[J]. Journal of Materials Science: Materials in Electronics,2019,30:13534-13542. doi: 10.1007/s10854-019-01721-2
    VENKATASUBRAMANIAN R, SILVOLA E, COLPITTS T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature,2001,413(6856):597-602.
    CAO Y Q, ZHAO X B, ZHU T J, et al. Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure[J]. Applied Physics Letters,2008,92(14):143106. doi: 10.1063/1.2900960
    KIM H S, HONG S J. Thermoelectric properties of n-type 95%Bi2Te3-5%Bi2Se3 compounds fabricated by gas-atomization and spark plasma sintering[J]. Journal of Alloys and Compounds,2014,586:S428-S431. doi: 10.1016/j.jallcom.2013.05.163
    DOU Y C, QIN X Y, LI D, et al. Enhanced thermopower and thermoelectric performance through energy filtering of carriers in (Bi2Te3)0.2(Sb2Te3)0.8 bulk alloy embedded with amorphous SiO2 nanoparticles[J]. Journal of Applied Physics,2013,114:044906. doi: 10.1063/1.4817074
    HE W, ZHANG G, ZHANG X X, et al. Recent development and application of thermoelectric generator and cooler[J]. Applied Energy,2015,143(1):1-25.
    XIONG J H, XU J K, LIU C C, et al. Thermoelectric performance of PEDOT∶PSS/Bi2Te3-nanowires: A comparison of hybrid types[J]. Journal of Materials Science Materials in Electronics,2016,27:1769-1776. doi: 10.1007/s10854-015-3952-9
    DU Y, CHEN S, CAI K F, et al. Facile preparation and thermoelectric properties of Bi2Te3 based alloy nanosheet/PEDOT∶PSS composite films[J]. ACS Applied Materials & Interfaces,2014,6(8):5735-5743.
    KIM W S, ANOOP G, JO J Y, et al. Feasible tuning of barrier energy in PEDOT∶PSS/Bi2Te3 nanowires-based thermoelectric nanocomposite thin films through polar solvent vapor annealing[J]. Nano Energy,2020,67:104207. doi: 10.1016/j.nanoen.2019.104207
    GOO G, ANOOP G, JO J Y, et al. Proton-irradiation effects on the thermoelectric properties of flexible Bi2Te3/PEDOT∶PSS composite films[J]. Advanced Electronic Materials,2019,5(4):1800786. doi: 10.1002/aelm.201800786
    张红晨, 程颖, 荣剑英. P型Bi0.5Sb1.5Te3热压烧结热电材料的制备与性能研究[J]. 哈尔滨师范大学自然科学学报, 2007(2):45-48.

    ZHANG Hongchen, CHENG Ying, RONG Jianying. Preparation and properties of P Bi0.5Sb1.5Te3 thermoelectric materials by hot pressing[J]. Natural Science Journal of Harbin Normal University,2007(2):45-48(in Chinese).
    BHARTI M, SINGH A, SAINI G, et al. Boosting thermoelectric power factor of free-standing poly(3, 4-ethylenedioxythiophene)∶polystyrenesulphonate films by incorporation of bismuth antimony telluride nanostructures[J]. Journal of Power Sources,2019,435(30):226758.
    WANG Y, HONG M, LIU W, et al. Bi0.5Sb1.5Te3/PEDOT∶PSS-based flexible thermoelectric film and device[J]. Chemical Engineering Journal,2020,397:125360. doi: 10.1016/j.cej.2020.125360
    BOYCE J B, HUBERMAN B A. Superionic conductors: Transitions, structures, dynamics[J]. Physics Reports,1979,51(4):189-265. doi: 10.1016/0370-1573(79)90067-X
    MENG Q F, SONG H J, DU Y, et al. Facile preparation of poly(3, 4-ethylenedioxythiophene)∶poly(styrenesulfonate)/Ag2Te nanorod composite films for flexible thermoelectric generator[J]. Journal of Materiomics,2021,7(2):302-309. doi: 10.1016/j.jmat.2020.10.011
    MAZZIO K A, KOJDA D, RUBIO-GOVEA R, et al. P-type-to-N-type transition in hybrid AgxTe/PEDOT∶PSS thermoelectric materials via stoichiometric control during solution-based synthesis[J]. ACS Applied Energy Materials,2020,3(11):10734-10743. doi: 10.1021/acsaem.0c01774
    DU Y, CAI K F, SHEN S Z, et al. ZnO flower/PEDOT∶PSS thermoelectric composite films[J]. Journal of Materials Science: Materials in Electronics,2016,27:10289-10293. doi: 10.1007/s10854-016-5111-3
    CHENG X J, WANG L, WANG X, et al. Flexible films of poly(3, 4-ethylenedioxythiophene)∶poly(styrenesulfonate)/SnS nanobelt thermoelectric composites[J]. Composites Science and Technology,2017,155(8):247-251.
    SUN X, SUN T, LU X, et al. Simultaneously improving thermopower and electrical conductivity via polar organic solvents aided layer-by-layer technique[J]. Materials Science in Semiconductor Processing,2020,108(13):104909.
    PARK D, KIM M, KIM J. Fabrication of PEDOT∶PSS/Ag2Se nanowires for polymer-based thermoelectric applications[J]. Polymers,2020,12(12):2932. doi: 10.3390/polym12122932
    LIU C C, JIANG F X, XU J K, et al. Free-standing PEDOT-PSS/Ca3Co4O9 composite films as novel thermoelectric materials[J]. Journal of Electronic Materials,2011,40(5):948-952. doi: 10.1007/s11664-010-1465-0
    BUBNOVA O, CRISPIN X. Towards polymer-based organic thermoelectric generators[J]. Energy & Environmental Science,2012,5:9345-9362.
    LIU Y, SONG Z J, WANG L J, et al. Preparation of bulk Ag-NWs/PEDOT∶PSS composites: A new model towards high-performance bulk organic thermoelectric materials[J]. RSC Advances,2015,5(56):45106-45112. doi: 10.1039/C5RA05551B
    SON W, LEE S H, KIM J H, et al. Thermoelectric behavior of conducting polymers hybridized with inorganic nanoparticles[J]. Journal of Electronic Materials,2016,45(6):2935-2942. doi: 10.1007/s11664-016-4356-1
    SONG H J, CAI K F. Preparation and properties of PEDOT∶PSS/Te nanorod composite films for flexible thermoelectric power generator[J]. Energy,2017,125(15):519-525.
    YEE S K, COATES N E, MAJUMDAR A, et al. Thermoelectric power factor optimization in PEDOT∶PSS tellurium nanowire hybrid composites[J]. Physical Chemistry Chemical Physics,2013,15(11):4024-4032. doi: 10.1039/c3cp44558e
    LIANG Y D, XIONG Y, ZHENG J J, et al. Study of thermoelectric properties in the PEDOT∶PSS/Te double-layer thin film devices[J]. Composites Communications,2021,27:100888. doi: 10.1016/j.coco.2021.100888
    BAE E J, KANG Y H, JANG K S, et al. Enhancement of thermoelectric properties of PEDOT∶PSS and tellurium-PEDOT: PSS hybrid composites by simple chemical treatment[J]. Scientific Reports,2016,6:18805. doi: 10.1038/srep18805
    THONGKHAM W, LERTSATITTHANAKORN C, KANPITCHA J K, et al. Self-assembled three-dimensional Bi2Te3 nanowire-PEDOT∶PSS hybrid nanofilm network for ubiquitous thermoelectrics[J]. ACS Applied Materials & Interfaces,2019,11(6):6624-6633.
    WANG J Y, FAN X, LI Y F, et al. High-efficiency flexible organic photovoltaics and thermoelectricities based on thionyl chloride treated PEDOT∶PSS electrodes[J]. Frontiers in Chemistry,2022,9:807538. doi: 10.1039/D2QO90028A
    YANG J J, LI X J, JIA Y H, et al. Enhanced thermoelectric performance of PEDOT∶PSS films via ionic liquid post-treatment[J]. Chinese Physics B,2022,31(2):027302. doi: 10.1088/1674-1056/ac2487
    LI X, ZOU R, LIU Z, et al. Deciphering the superior thermoelectric property of post-treatment-free PEDOT∶PSS/IL hybrid by X-ray and neutron scattering characterization[J]. npj Flexible Electronics,2022,6:1691.
    WEI S S, LIU L, HUANG X, et al. Flexible and foldable films of SWCNT thermoelectric composites and an S-shape thermoelectric generator with a vertical temperature gradient[J]. ACS Applied Materials & Interfaces,2022,14(4):5973-5982.
    FU P, XIAO J K, GONG J Z, et al. Interfacial enhancement effect of graphene quantum dots on PEDOT∶PSS/single-walled carbon nanotubes thermoelectric materials[J]. Synthetic Metals,2021,280:116861. doi: 10.1016/j.synthmet.2021.116861
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (1808) PDF downloads(250) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint