WANG Zhihang, BAI Erlei, XU Jinyu, et al. Dynamic compression mechanical properties of polymer modified carbon fiber reinforced concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1586-1597. DOI: 10.13801/j.cnki.fhclxb.20220429.002
Citation: WANG Zhihang, BAI Erlei, XU Jinyu, et al. Dynamic compression mechanical properties of polymer modified carbon fiber reinforced concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1586-1597. DOI: 10.13801/j.cnki.fhclxb.20220429.002

Dynamic compression mechanical properties of polymer modified carbon fiber reinforced concrete

Funds: National Natural Science Foundation of China (51908548); Project Approved by National Civil Air Defense Office (RF20SC01J-S0); Shaanxi University Science and Technology Association Youth Talent Promotion Program (20200415)
More Information
  • Received Date: March 23, 2022
  • Revised Date: April 13, 2022
  • Accepted Date: April 22, 2022
  • Available Online: April 28, 2022
  • To explore the dynamic compression mechanical properties of polymer modified carbon fiber reinforced concrete (PMCFRC), the diameter Φ100 mm split Hopkinson pressure bar (SHPB) test device was used to carry out impact compression tests under five sets of different air pressures on carbon fiber reinforced concrete and PMCFRC with polymer content of 4vol%, 8vol%, and 12vol% respectively. The dynamic stress-strain curve and failure morphology of concrete under different strain rates were obtained, and the influence of strain rate and polymer content on the dynamic compressive strength, deformation and toughness of PMCFRC was analyzed. The results show that the dynamic compression strength, deformation and toughness of PMCFRC have obvious strain rate strengthening effects, and the polymer has both strengthening and degrading effects on the dynamic compression mechanical properties of PMCFRC. As the strain rate increases, the dynamic compressive strength, dynamic strength increase factor (DIF), dynamic peak strain and impact toughness of PMCFRC gradually increase. With the increase of the polymer content, the dynamic compressive strength, DIF and impact toughness of PMCFRC first increase and then decrease, and the dynamic peak strain continues to increase. Under the same strain rate level, 4%PMCFRC has the largest dynamic compressive strength, impact toughness, and the least damage; 8%PMCFRC has the best strain rate sensitivity, the maximum DIF is 1.94, and the greatest increase in concrete strength. On the one hand, the polymer plays the role of filling, crack resistance and toughening in the concrete matrix, and on the other hand, it improves the bonding performance of the carbon fiber-concrete matrix interface; when the polymer content is large, it will form a “soft interlayer” in the concrete matrix.
  • [1]
    陈宝春, 韦建刚, 苏家战, 等. 超高性能混凝土应用进展[J]. 建筑科学与工程学报, 2019, 36(2):10-20. DOI: 10.3969/j.issn.1673-2049.2019.02.003

    CHEN Baochun, WEI Jiangang, SU Jiazhan, et al. Application progress of ultra-high performance concrete[J]. Journal of Building Science and Engineering,2019,36(2):10-20(in Chinese). DOI: 10.3969/j.issn.1673-2049.2019.02.003
    [2]
    ZHU B R, NEMATOLLAHI B, PAN J L, et al. 3D concrete printing of permanent formwork for concrete column construction[J]. Cement and Concrete Composites,2021,121:104039. DOI: 10.1016/j.cemconcomp.2021.104039
    [3]
    丁道红, 章青. 混凝土缺陷研究综述[J]. 混凝土, 2009(10):16-18, 23.

    DING Daohong, ZHANG Qing. Review of research on concrete defects[J]. Concrete,2009(10):16-18, 23(in Chinese).
    [4]
    TSIOTSIAS K, PANTAZOPOULOU S J. Bond behavior of high-performance fiber reinforced concrete (HPFRC) under direct tension pullout[J]. Engineering Structures,2021,243:112701. DOI: 10.1016/j.engstruct.2021.112701
    [5]
    MARCELLO C, ELEAZAR C M S, DEANE R, et al. Fracture modeling of fiber reinforced concrete in a multiscale approach[J]. Composites Part B: Engineering,2019,174:106958. DOI: 10.1016/j.compositesb.2019.106958
    [6]
    高丹盈, 赵亮平, 冯虎, 等. 钢纤维混凝土弯曲韧性及其评价方法[J]. 建筑材料学报, 2014, 17(5):783-789. DOI: 10.3969/j.issn.1007-9629.2014.05.006

    GAO Danying, ZHAO Liangping, FENG Hu, et al. Flexural toughness of steel fiber concrete and its evaluation method[J]. Journal of Building Materials,2014,17(5):783-789(in Chinese). DOI: 10.3969/j.issn.1007-9629.2014.05.006
    [7]
    AL-HAMRANI A, ALNAHHAL W. Shear behavior of basalt FRC beams reinforced with basalt FRP bars and glass FRP stirrups: Experimental and analytical investigations[J]. Engineering Structures,2021,242:112612. DOI: 10.1016/j.engstruct.2021.112612
    [8]
    许金余, 白二雷. 纤维混凝土及其在防护工程中的应用[J]. 空军工程大学学报(自然科学版), 2019, 20(4):1-11.

    XU Jinyu, BAI Erlei. Fiber concrete and its application in protection engineering[J]. Journal of Air Force Engineering University (Natural Science Edition),2019,20(4):1-11(in Chinese).
    [9]
    杨健辉, 李潇雅, 叶亚齐, 等. 全轻纤维混凝土的SHPB冲击强度与耗能效应[J]. 振动与冲击, 2020, 39(2):148-153, 177.

    YANG Jianhui, LI Xiaoya, YE Yaqi, et al. SHPB impact strength and energy dissipation effect of all light fiber concrete[J]. Vibration and Shock,2020,39(2):148-153, 177(in Chinese).
    [10]
    CHEN L J, ZHANG X X, LIU G M. Analysis of dynamic mechanical properties of sprayed fiber-reinforced concrete based on the energy conversion principle[J]. Construction and Building Materials,2020,254:119167. DOI: 10.1016/j.conbuildmat.2020.119167
    [11]
    杜向琴, 刘志龙. 碳纤维对混凝土力学性能的影响研究[J]. 混凝土, 2018(4):91-94. DOI: 10.3969/j.issn.1002-3550.2018.04.023

    DU Xiangqin, LIU Zhilong. Study on the effect of carbon fiber on mechanical properties of concrete[J]. Concrete,2018(4):91-94(in Chinese). DOI: 10.3969/j.issn.1002-3550.2018.04.023
    [12]
    LU S, BAI E L, XU J Y, et al. Research on electromagnetic properties and microwave deicing performance of carbon fiber modified concrete[J]. Construction and Building Materials,2021,286:122868. DOI: 10.1016/j.conbuildmat.2021.122868
    [13]
    李为民, 许金余, 翟毅, 等. 冲击荷载作用下碳纤维混凝土的力学性能[J]. 土木工程学报, 2009, 42(2):24-30, 38. DOI: 10.3321/j.issn:1000-131X.2009.02.004

    LI Weimin, XU Jinyu, ZHAI Yi, et al. Mechanical properties of carbon fiber concrete under impact load[J]. Civil Engi-neering Journal,2009,42(2):24-30, 38(in Chinese). DOI: 10.3321/j.issn:1000-131X.2009.02.004
    [14]
    白二雷, 许金余, 高志刚. 碳纤维混凝土的动态损伤本构模型[J]. 建筑科学, 2011, 27(11):20-23. DOI: 10.3969/j.issn.1002-8528.2011.11.005

    BAI Erlei, XU Jinyu, GAO Zhigang. Dynamic damage constitutive model of carbon fiber concrete[J]. Building Science,2011,27(11):20-23(in Chinese). DOI: 10.3969/j.issn.1002-8528.2011.11.005
    [15]
    WANG Z H, XU J Y, BAI E L, et al. Dielectric model of carbon nanofiber reinforced concrete[J]. Materials,2020,13(21):4869. DOI: 10.3390/ma13214869
    [16]
    孟欣, 许金余, 吕晓聪, 等. 碳纤维混凝土微波吸热效率的研究[J]. 空军工程大学学报(自然科学版), 2021, 22(2):107-110.

    MENG Xin, XU Jinyu, LU Xiaocong, et al. Research on the microwave heat absorption efficiency of carbon fiber concrete[J]. Journal of Air Force Engineering University (Natural Science Edition),2021,22(2):107-110(in Chinese).
    [17]
    王建娥. 碳纤维增强混凝土力学性能及耐久性分析[J]. 四川建材, 2014, 40(1):21-22. DOI: 10.3969/j.issn.1672-4011.2014.01.011

    WANG Jian'e. Analysis of the mechanical properties and durability of carbon fiber reinforced concrete[J]. Sichuan Building Materials,2014,40(1):21-22(in Chinese). DOI: 10.3969/j.issn.1672-4011.2014.01.011
    [18]
    周乐, 王晓初, 刘洪涛. 碳纤维混凝土力学性能与破坏形态试验研究[J]. 工程力学, 2013, 30(S1):226-231.

    ZHOU Le, WANG Xiaochu, LIU Hongtao. Experimental study on the mechanical properties and failure modes of carbon fiber concrete[J]. Engineering Mechanics,2013,30(S1):226-231(in Chinese).
    [19]
    ZHANG H, WANG L, ZHENG K, et al. Research on compressive impact dynamic behavior and constitutive model of polypropylene fiber reinforced concrete[J]. Construction and Building Materials,2018,187:584-595. DOI: 10.1016/j.conbuildmat.2018.07.164
    [20]
    AHMED G B, EHAB F E. Ductility and performance assessment of glass fiber-reinforced polymer-reinforced concrete deep beams incorporating cementitious composites reinforced with basalt fiber pellets[J]. ACI Structural Journal,2021,118(4):83-95.
    [21]
    LV Y, ZHANG Y Q. Compression properties of basalt fiber-reinforced polymer confined coconut shell concrete[J]. Journal of Materials in Civil Engineering,2021,33(7):04021145.
    [22]
    常森, 许金余, 杨宁. 新型聚合物乳胶粉对碳纤维增强混凝土力学性能的影响[J]. 功能材料, 2019, 50(11):11161-11165. DOI: 10.3969/j.issn.1001-9731.2019.11.027

    CHANG Sen, XU Jinyu, YANG Ning. Effect of new polymer latex powder on the mechanical properties of carbon fiber reinforced concrete[J]. Functional Materials,2019,50(11):11161-11165(in Chinese). DOI: 10.3969/j.issn.1001-9731.2019.11.027
    [23]
    HUANG H, PANG H, HUANG J H, et al. Synthesis and characterization of ground glass fiber reinforced polyurethane-based polymer concrete as a cementitious runway repair material[J]. Construction and Building Materials,2020,242:117221. DOI: 10.1016/j.conbuildmat.2019.117221
    [24]
    中华人民共和国住房和城乡建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2002.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods for mechanical properties of ordinary concrete: GB/T 50081—2002[S]. Beijing: China Building Industry Press, 2002(in Chinese).
    [25]
    许金余, 李赞成, 罗鑫, 等. 橡胶混凝土的静动压缩强度特性的对比研究[J]. 建筑材料学报, 2014, 17(6):1015-1019, 1035. DOI: 10.3969/j.issn.1007-9629.2014.06.013

    XU Jinyu, LI Zancheng, LUO Xin, et al. Comparative study on static and dynamic compressive strength properties of rubberized concrete[J]. Journal of Building Materials,2014,17(6):1015-1019, 1035(in Chinese). DOI: 10.3969/j.issn.1007-9629.2014.06.013
    [26]
    WANG Z H, BAI E L, XU J Y, et al. Effect of nano-SiO2 and nano-CaCO3 on the static and dynamic properties of concrete[J]. Scientific Reports,2022,12(1):907. DOI: 10.1038/s41598-021-04632-7
    [27]
    WAHID F, ALLAN M, HONG S W, et al. Optimal design for epoxy polymer concrete based on mechanical properties and durability aspects[J]. Construction and Building Materials,2020,232:117229. DOI: 10.1016/j.conbuildmat.2019.117229
    [28]
    江润东, 徐晓沐, 毛继泽, 等. 我国纤维聚合物混凝土的研究现状[J]. 化学与黏合, 2017, 39(3):205-210.

    JIANG Rundong, XU Xiaomu, MAO Jize, et al. Research status of fiber polymer concrete in my country[J]. Che-mistry and Adhesion,2017,39(3):205-210(in Chinese).
  • Related Articles

    [1]WANG Jihua, LIU Junwang, WANG Chunfeng, WANG Yongliang, HAN Zhidong. Dielectric properties and preparation of microcapacitor of polyvinylidene fluoride matrix composite[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1426-1434. DOI: 10.13801/j.cnki.fhclxb.20200922.006
    [2]ZHANG Zijing, LIU Chang, LI Ruhui, WU Chonggang, GONG Xinghou, HU Tao. Preparation and dielectric properties of silanized multi-walled carbon nanotubes/silicone rubber composites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1675-1683. DOI: 10.13801/j.cnki.fhclxb.20191113.004
    [3]ZHANG Mingyan, WANG Denghui, WU Zijian, YANG Zhenhua, LIU Ju. Dielectric properties of modified carbon nanotube/epoxy composites[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1285-1294. DOI: 10.13801/j.cnki.fhclxb.20191105.001
    [4]YAN Shicheng, XUE Yahong, YANG Yulin, BAO Qianqian, WEI Liming, ZHAO Nan. Thermal insulation and dielectric properties of aluminium phosphate-polyethersulphone layered composites[J]. Acta Materiae Compositae Sinica, 2017, 34(9): 1919-1925. DOI: 10.13801/j.cnki.fhclxb.20161130.003
    [5]CUI Xiaoping, ZHU Guangming, LIU Wenyuan. Dielectric and mechanical properties of nano Al2O3/polyimide composite films[J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2419-2425. DOI: 10.13801/j.cnki.fhclxb.20160108.002
    [6]CHEN Dong, JU Jianguo, HAO Xufeng. Dielectric properties of quartz fiber reinforced KH308 composites[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 563-568.
    [7]YAO Guoguang, LIU Peng. Microwave dielectric properties of Mg4Nb2O9/CaTiO3 composite ceramics[J]. Acta Materiae Compositae Sinica, 2011, 28(1): 94-98.
    [8]SONG Xiugong, WANG Jihui, GAO Guoqiang. Temperature and dielectric property of resin during RTM process[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 18-21.
    [9]GAO Feng, YANG Zupei, LIU Xiangchun, TIAN Changsheng. PHASE STRUCTURE AND DIELECTRIC PROPERTIES OF FERROELECTRICS AND FERRITE MIXED COMPOSITES[J]. Acta Materiae Compositae Sinica, 2004, 21(5): 22-27.
    [10]DONG Lijie, XIONG Chuanxi, CHEN Juan, LIU Qihong, WANG Yanbing, REN Zhongkui. DIELECTRIC PROPERTY OF BaTiO3/PVDF COMPOSITE PREPARED BY A MELT PROCESS[J]. Acta Materiae Compositae Sinica, 2003, 20(3): 122-126.
  • Cited by

    Periodical cited type(4)

    1. 于丹. 聚氯乙烯/碳纳米管复合材料的制备和性能研究. 塑料科技. 2024(01): 36-39 .
    2. 余澎,涂操,郭博森,王闻达,赵航,彭玉婷,罗卫华. 木质素基碳纳米管/炭复合材料的制备及电化学性能研究. 现代化工. 2023(02): 92-97 .
    3. 冀佳帅,杜佳琪,陈俊琳,张新民,刘伟,宋朝霞. Co-Fe普鲁士蓝/多壁碳纳米管复合材料的超电容性能. 材料科学与工艺. 2023(04): 1-8 .
    4. 张开砚. 电感耦合等离子体发射光谱法测定普鲁士蓝类正极材料中铁和钠. 化学分析计量. 2022(08): 26-30 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (945) PDF downloads (58) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return