Volume 40 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
ZHAO Huhu, ZHOU Yujing, HU Xiaolan, et al. Controllable preparation method and performance of three-dimensional reduced graphene oxide aerogel under mild conditions[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1512-1521. doi: 10.13801/j.cnki.fhclxb.20220424.005
Citation: ZHAO Huhu, ZHOU Yujing, HU Xiaolan, et al. Controllable preparation method and performance of three-dimensional reduced graphene oxide aerogel under mild conditions[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1512-1521. doi: 10.13801/j.cnki.fhclxb.20220424.005

Controllable preparation method and performance of three-dimensional reduced graphene oxide aerogel under mild conditions

doi: 10.13801/j.cnki.fhclxb.20220424.005
Funds:  Open Fund of the State Key Laboratory of Advanced Forming Technology and Equipment (SKL2020002); Natural Science Foundation of Shandong Province (ZR2020ME068); Key Research and Development Plan of Hainan Province (ZDYF2020011)
  • Received Date: 2022-03-07
  • Accepted Date: 2022-04-19
  • Rev Recd Date: 2022-04-07
  • Available Online: 2022-04-26
  • Publish Date: 2023-03-15
  • In order to realize the large-area controllable preparation and high performance of graphene-based three-dimensional aerogels under mild environmental conditions, hydrazine hydrate is used as reducing agent in this paper. Through low-temperature pre-frozen combined with natural drying at room temperature, large-area three-dimensional reduced graphene oxide (3D-RGO) aerogels with a diameter of 30 cm can be prepared effectively and controlled. The method has mild preparation conditions and does not need any heating conditions or special freeze-drying equipment. By controlling the reduction time, pre-frozen time, pre-frozen temperature and reaction vessel during the preparation of 3D-RGO aerogel, the shape, surface wettability, volume shrinkage aerogel can be effectively adjusted to achieve controllable preparation of 3D-RGO aerogel. The 3D-RGO aerogel has no obvious volume shrinkage and structural cracks. The aerogels exhibit a stable honeycomb-like structure with a stable pore size of about 500 μm and a low density of 3.8 mg/cm3, and it can quickly undergo a compression strain of 90% and return to the initial state. The volume shrinkage rate of the aerogels is <5% in the drying process. At the same time, the graphene aerogel exhibits good and stable conductivity. When the compressive strain increases from 0% to 90%, its conductivity increases from 17.3 S/m to 115.2 S/m. This method is suitable for the cost-effective preparation of large-area graphene aerogels.

     

  • loading
  • [1]
    郭奇, 高源, 荔栓红, 等. 石墨烯增强聚合物气密性的研究进展[J]. 复合材料学报, 2022, 39(3):896-906.

    GUO Qi, GAO Yuan, LI Shuanhong, et al. Research progress in the enhanced polymer airtightness of graphene[J]. Acta Materiae Compositae Sinica,2022,39(3):896-906(in Chinese).
    [2]
    XU X, ZHANG Q, YU Y, et al. Naturally dried graphene aerogels with superelasticity and tunable Poisson's ratio[J]. Advanced Materials,2016,28(41):9223-9230. doi: 10.1002/adma.201603079
    [3]
    ZHAO X, YAO W, GAO W, et al. Wet-spun superelastic graphene aerogel millispheres with group effect[J]. Advanced Materials,2017,29(35):1701482. doi: 10.1002/adma.201701482
    [4]
    MAO J, IOCOZZIA J, HUANG J, et al. Graphene aerogels for efficient energy storage and conversion[J]. Energy & Environmental Science,2018,11(4):772-799.
    [5]
    朱薇, 江坤, 游峰, 等. 三维立体介孔结构的海藻酸钠/氧化石墨烯复合气凝胶的制备及其对亚甲基蓝的吸附[J]. 复合材料学报, 2022, 39(5):1696-1706.

    ZHU Wei, JIANG Kun, YOU Feng. Preparation of 3-dimensional mesoporous sodium alginate/graphene oxide composite aerogel for adsorption of methylene blue[J]. Acta Materiae Compositae Sinica,2022,39(5):1696-1706(in Chinese).
    [6]
    张宏伟, 谢鸿, 肖欣荣, 等. 不同氧化程度氧化石墨烯/聚乙烯醇气凝胶对亚甲基蓝的吸附[J]. 复合材料学报, 2021, 38(9):2795-2802.

    ZHANG Hongwei, XIE Hong, XIAO Xinrong, et al. Adsorption of methylene blue by graphene oxide/polyvinyl alcoholaerogels with different oxidation degrees[J]. Acta Materiae Compositae Sinica,2021,38(9):2795-2802(in Chinese).
    [7]
    NINE M J, AYUB M, ZANDER A C, et al. Graphene oxide-based lamella network for enhanced sound absorption[J]. Advanced Functional Materials,2017,27(46):1703820. doi: 10.1002/adfm.201703820
    [8]
    朱世东, 赵乾臻, 王星海. 石墨烯/高分子功能复合材料制备与应用研究进展[J]. 复合材料学报, 2022, 39(2):489-501.

    ZHU Shidong, ZHAO Qianzhen, WANG Xinghai. Research progress in preparation and application of graphene/polymer functional composite materials[J]. Acta Materiae Compositae Sinica,2022,39(2):489-501(in Chinese).
    [9]
    BI H, YIN K, XIE X, et al. Low temperature casting of graphene with high compressive strength[J]. Advanced Materials, 2012, 24(37): 5124-5129.
    [10]
    WANG Z, SHEN X, AKBARI GARAKANI M, et al. Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties[J]. ACS Applied Materials & Interfaces,2015,7(9):5538-5549.
    [11]
    BI H, CHEN I W, LIN T, et al. A new tubular graphene form of a tetrahedrally connected cellular structure[J]. Advanced Materials, 2015, 27(39): 5943-5949
    [12]
    LV L, ZHANG P, CHENG H, et al. Solution-processed ultraelastic and strong air-bubbled graphene foams[J]. Small, 2016, 12(24): 3229-3234
    [13]
    WANG C, CHEN X, WANG B, et al. Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure[J]. ACS Nano,2018,12(6):5816-5825. doi: 10.1021/acsnano.8b01747
    [14]
    WANG C, HE X, SHANG Y, et al. Multifunctional graphene sheet-nanoribbon hybrid aerogels[J]. Journal of Materials Chemistry A,2014,2(36):14994-15000. doi: 10.1039/C4TA02591A
    [15]
    WORSLEY M A, PAUZAUSKIE P J, OLSON T Y, et al. Synthesis of graphene aerogel with high electrical conductivity[J]. Journal of the American Chemical Society,2010,132(40):14067-14069. doi: 10.1021/ja1072299
    [16]
    LI J, LI J, MENG H, et al. Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids[J]. Journal of Materials Chemistry A,2014,2(9):2934-2941. doi: 10.1039/c3ta14725h
    [17]
    周浪, 王涛. 石墨烯/功能聚合物复合材料[J]. 复合材料学报, 2020, 37(5):997-1014.

    ZHOU Lang, WANG Tao. Graphene/functional polymer composites[J]. Acta Materiae Compositae Sinica,2020,37(5):997-1014(in Chinese).
    [18]
    胡涵. 石墨烯气凝胶的控制制备、改性及性能研究[D]. 大连: 大连理工大学, 2015.

    HU Han. Controlled preparation, modification and performance of graphene aerogel[D]. Dalian: Dalian University of Technology, 2015(in Chinese).
    [19]
    LI C, QIU L, ZHANG B, et al. Robust vacuum-/air-dried graphene aerogels and fast recoverable shape-memory hybrid foams[J]. Advanced Materials,2016,28(7):1510-1516. doi: 10.1002/adma.201504317
    [20]
    ZHANG R, HU R, LI X, et al. A bubble-derived strategy to prepare multiple graphene-based porous materials[J]. Advanced Functional Materials,2018,28(23):1705879. doi: 10.1002/adfm.201705879
    [21]
    XIAO J, TAN Y, SONG Y, et al. A flyweight and superelastic graphene aerogel as a high-capacity adsorbent and highly sensitive pressure sensor[J]. Journal of Materials Chemistry A,2018,6(19):9074-9080. doi: 10.1039/C7TA11348J
    [22]
    XU X, ZHANG Q, YU Y, et al. Naturally dried graphene aerogels with superelasticity and tunable Poisson’s ratio[J]. Advanced Materials, 2016, 28(41): 9223-9230.
    [23]
    RUI C, TANAKA D, MENDES A. Reduced graphene oxide films as transparent counter-electrodes for dye-sensitized solar cells [J]. Solar Energy, 2012, 86 (2): 716-724.
    [24]
    郑晓明. 基于拉曼光谱的石墨烯研究[D]. 长沙: 国防科学技术大学, 2015.

    ZHENG Xiaoming. Research on graphene based on raman spectroscopy[D]. Changsha: National University of Defense Technology, 2015(in Chinese).
    [25]
    ZHANG J, YANG H, SHEN G, et al. Reduction of graphene oxide via L-ascorbic acid[J]. Chemical Communications,2010,46(7):1112-1114. doi: 10.1039/B917705A
    [26]
    RHEE J H, CHUNG C C, DIAU W G. A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites [J]. NPG Asia Materials, 2013, 5(10): e68.
    [27]
    MOON I K, YOON S, CHUN K Y, et al. Highly elastic and conductive N-doped monolithic graphene aerogels for multifunctional applications[J]. Advanced Functional Materials,2015,25(45):6976-6984. doi: 10.1002/adfm.201502395
    [28]
    LI C, DING M, ZHANG B, et al. Graphene aerogels that withstand extreme compressive stress and strain [J]. Nanoscale, 2018, 10(38): 18291-18299.
    [29]
    CHEN Z, REN W, GAO L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials,2011,10(6):424-428. doi: 10.1038/nmat3001
    [30]
    ZHANG X, SUI Z, XU B, et al. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources[J]. Journal of Materials Chemistry,2011,21(18):6494-6497. doi: 10.1039/c1jm10239g
    [31]
    ZHAO Y, HU C, HU Y, et al. A versatile, ultralight, nitrogen-doped graphene framework[J]. Angewandte Chemie International Edition,2012,51(45):11371-11375. doi: 10.1002/anie.201206554
    [32]
    SUN H, XU Z, GAO C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels [J]. Advanced Materials, 2013, 25 (18): 2554-2560.
    [33]
    LI Y, CHEN J, HUANG L, et al. Highly compressible macroporous graphene monoliths via an improved hydrothermal process[J]. Advanced Materials,2014,26(28):4789-4793. doi: 10.1002/adma.201400657
    [34]
    BARG S, PEREZ F M, NI N, et al. Mesoscale assembly of chemically modified graphene into complex cellular networks[J]. Nature Communications,2014,5(1):4328. doi: 10.1038/ncomms5328
    [35]
    WU Y, YI N, HUANG L, et al. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero poisson’s ratio[J]. Nature Communications,2015,6(1):6141. doi: 10.1038/ncomms7141
    [36]
    LI Y, ZHANG H B, ZHANG L, et al. One-pot sintering strategy for efficient fabrication of high-performance and multifunctional graphene foams[J]. ACS Applied Materials & Interfaces,2017,9(15):13323-13330.
    [37]
    YANG J, LI X, HAN S, et al. Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability[J]. Journal of Materials Chemistry A,2016,4(46):18067-18074. doi: 10.1039/C6TA07869A
    [38]
    YANG H, LI Z, LU B, et al. Reconstruction of inherent graphene oxide liquid crystals for large-scale fabrication of structure-intact graphene aerogel bulk toward practical applications[J]. ACS Nano,2018,12(11):11407-11416. doi: 10.1021/acsnano.8b06380
    [39]
    刘亮, 鲍瑞, 易健宏. 碳纳米管-石墨烯气凝胶的制备与性能 [J]. 复合材料学报, 2017, 34(10): 2296-2303.

    LIU Liang BAO Rui, YI Jianhong. Preparation and properties of CNTs-graphene aerogel[J]. Acta Materiae Compositae Sinica, 2017, 34(10): 2296-2303(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (1049) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return