Citation: | XU Peng, WANG Yang, WANG Shasha, DAI Wei, CHEN Nannan, LI Qun. Preparation and antibacterial properties of porous polyacrylonitrile composite fiber membrane loaded with silver/copper nanoparticles[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 836-843. doi: 10.13801/j.cnki.fhclxb.20220419.005 |
[1] |
BEHRAVAN M, PANAHI A H, NAGHIZADEH A, et al. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity[J]. International Journal of Biological Macromolecules,2019,124:148-154. doi: 10.1016/j.ijbiomac.2018.11.101
|
[2] |
TAO Y, JU E G, REN J S, et al. Bifunctionalized mesoporous silica-supported gold nanoparticles: Intrinsic oxidase and peroxidase catalytic activities for antibacterial applications[J]. Advanced Materials,2015,27(6):1097-1104. doi: 10.1002/adma.201405105
|
[3] |
PATTANAYAK D S, MALLICK N, THAKUR C, et al. Plant mediated green synthesis of silver nanoparticles for antimicrobial application: Present status[J]. Journal of the Indian Chemical Society,2020,97(7):1108-1114.
|
[4] |
SHAIKH S, NAZAM N, RIZVI S M D, et al. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance[J]. International Journal of Molecular Sciences,2019,20(10):2468.
|
[5] |
MUBARAKALI D, THAJUDDIN N, JEGANATHAN K, et al. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens[J]. Colloids and Surfaces B: Biointerfaces,2011,85(2):360-365. doi: 10.1016/j.colsurfb.2011.03.009
|
[6] |
DURAN N, DURAN M, DE JESUS M B, et al. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity[J]. Nanomedicine-Nanotechnology and Medicine,2016,12(3):789-799. doi: 10.1016/j.nano.2015.11.016
|
[7] |
SHU Z, ZHANG Y, YANG Q, et al. Halloysite nanotubes supported Ag and ZnO nanoparticles with synergistically enhanced antibacterial activity[J]. Nanoscale Research Letters,2017,12(1):1-7. doi: 10.1186/s11671-017-1859-5
|
[8] |
ANANDALAKSHMI K, VENUGOBAL J, RAMASAMY V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity[J]. Applied Nanoscience,2016,6(3):399-408. doi: 10.1007/s13204-015-0449-z
|
[9] |
CHEN Y F, ZHANG Y T, LIU J D, et al. Preparation and antibacterial property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes loaded with copper ions[J]. Chemical Engineering Journal,2012,210:298-308. doi: 10.1016/j.cej.2012.08.100
|
[10] |
刘亚飞, 李梦, 赵欣, 等. 浅谈纳米银粒子的制备及其在抗菌涂料中的应用[J]. 化工新型材料, 2019, 47(2):37-41.
LIU Yafei, LI Meng, ZHAO Xin, et al. Discussion on preparation of silver nanoparticles and its application in antibactrial coating[J]. New Chemical Materials,2019,47(2):37-41(in Chinese).
|
[11] |
HAN D L, HAN Y J, LI J, et al. Enhanced photocatalytic activity and photothermal effects of Cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds[J]. Applied Catalysis B: Environmental,2020,261:118248. doi: 10.1016/j.apcatb.2019.118248
|
[12] |
WANG L L, HU C, SHAO L Q, et al. The antimicrobial activity of nanoparticles: Present situation and prospects for the future[J]. International Journal of Nanomedicine,2017,12:1227-1249. doi: 10.2147/IJN.S121956
|
[13] |
SANCHEZ-LOPEZ E, GOMES D, ESTERUELAS G, et al. Metal-based nanoparticles as antimicrobial agents: An overview[J]. Nanomaterials,2020,10(2):292.
|
[14] |
KHATRI O P, ICHII T, MURASE K, et al. Covalent assembly of silver nanoparticles on hydrogen-terminated silicon surface[J]. Journal of Colloid and Interface Science,2012,382:22-27. doi: 10.1016/j.jcis.2012.06.001
|
[15] |
DAI H, CHEN Y L, LIN Y Y, et al. A new metal electrocatalysts supported matrix: Palladium nanoparticles supported silicon carbide nanoparticles and its application for alcohol electrooxidation[J]. Electrochimica Acta,2012,85:644-649. doi: 10.1016/j.electacta.2012.08.109
|
[16] |
ZHANG P, SHAO C L, ZHANG Z Y, et al. In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol[J]. Nanoscale,2011,3(8):3357-3363. doi: 10.1039/c1nr10405e
|
[17] |
李甫, 康卫民, 程博闻, 等. 负载银中空纳米碳纤维的制备及电化学性能[J]. 材料工程, 2016, 44(11):56-60. doi: 10.11868/j.issn.1001-4381.2016.11.009
LI Fu, KANG Weimin, CHENG Bowen, et al. Preparation and electrochemical properties of silver doped hollow carbon nanofibers[J]. Journal of Materials Engineering,2016,44(11):56-60(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.11.009
|
[18] |
DE FARIA A F, MARTINEZ D S T, MEIRA S M M, et al. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets[J]. Colloids and Surfaces B: Biointerfaces,2014,113:115-124. doi: 10.1016/j.colsurfb.2013.08.006
|
[19] |
XIANG J, LI J L, ZHANG X H, et al. Magnetic carbon nano-fibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers[J]. Journal of Materials Chemistry A,2014,2(40):16905-16914. doi: 10.1039/C4TA03732D
|
[20] |
向军, 张雄辉, 褚艳秋, 等. Fe-Ni合金/Ni铁氧体复合纳米纤维的制备、表征与磁性能研究[J]. 化学学报, 2012, 70:2265-2272. doi: 10.6023/A12080587
XIANG Jun, ZHANG Xionghui, CHU Yanqiu, et al. Preparation, characterization and magnetic properties of Fe-Ni alloy/Ni-ferrite composite nanofibers[J]. Acta Chemica Sinica,,2012,70:2265-2272(in Chinese). doi: 10.6023/A12080587
|
[21] |
WANG F Y, SUN Y Q, SUN Y Q, et al. Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning[J]. Carbon,2018,134:264-273.
|
[22] |
ZHAO W X, CI S Q, HU X, et al. Highly dispersed ultrasmall NiS2 nanoparticles in porous carbon nanofiber anodes for sodium ion batteries[J]. Nanoscale,2019,11(11):4688-4695. doi: 10.1039/C9NR00160C
|
[23] |
WANG M Q, YE C, LIU H, et al. General synthesis of nano-metal phosphides embedded N-doped porous carbon nanofibers for enhanced hydrogen evolution at all pH values[J]. Angewandte Chemie International Edition,2017,10(57):150.
|
[24] |
SONG Z M, LIU X F, SUN X, et al. Alginate-templated synthesis of CoFe/carbon fiber composite and the effect of hierarchically porous structure on electromagnetic wave absorption performance[J]. Carbon,2019,151:36-45. doi: 10.1016/j.carbon.2019.05.025
|
[25] |
FU Y, YU H Y, JIANG C, et al. NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen electrocatalyst[J]. Advanced Functional Materials,2018,28(9):1705094.
|
[26] |
孔祥前, 豆彩霞, 柴源涛, 等. 银缓释载银杀菌活性炭的低温水热炭化法制备[J]. 功能材料, 2016, 1(47):1203-1206.
KONG Xiangqian, DOU Caixia, CHAI Yuantao, et al. Acti-vated carbon with silver control release and antibacterial behavior by low temperature hydrothermal method[J]. Journal of Functional Materials,2016,1(47):1203-1206(in Chinese).
|
[27] |
兰小林, 段正康, 王永胜, 等. 不同晶相结构ZrO2负载铜基催化剂用于二乙醇胺脱氢反应[J]. 精细化工, 2019, 36(12):2438-2445.
LAN Xiaolin, DUAN Zhengkang, WANG Yongsheng, et al. ZrO2 with different crystal structure supported Cu catalysts for the dehydrogenation of diethanolamine[J]. Fine Chemicals,2019,36(12):2438-2445(in Chinese).
|
[28] |
罗凤凤, 王日昕, 廖先金, 等. 葡萄糖还原制备Cu2O及其形貌表征[J]. 化工新型材料, 2020, 48:48-50.
LUO Fengfeng, WANG Rixin, LIAO Xianjin, et al. Preparation and morphology characterization of Cu2O by glucose reducing[J]. New Chemical Materials,2020,48:48-50(in Chinese).
|
[29] |
CHEN Y Q, WU W, XU Z Q, et al. Photothermal-assisted antibacterial application of graphene oxide-Ag nanocomposites against clinically isolated multi-drug resistant Escherichia coli[J]. Royal Society Open Science, 2020, 7(7): 192019.
|
[30] |
CHATTERJEE A K, CHAKRABORTY R, BASU T. Mechanism of antibacterial activity of copper nanoparticles[J]. Nanotechnology, 2014, 25(13): 13501.
|
[31] |
WANG H L, HAO L L, WANG P, et al. Release kinetics and antibacterial activity of curcumin loaded zein fibers[J]. Food Hydrocolloids,2017,63:437-446. doi: 10.1016/j.foodhyd.2016.09.028
|