Citation: | QIN Shiqi, REN Zechun, WANG Chenxi, KOU Yun, LIU Zhaoyan, XU Min. Bionic design of wood cell wall based on 3D printing[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1085-1095. doi: 10.13801/j.cnki.fhclxb.20220414.004 |
[1] |
杨蕊, 曹清华, 梅长彤, 等. 高孔隙率三维结构木材构建功能复合材料的研究进展[J]. 复合材料学报, 2020, 37(8):1796-1804.
YANG Rui, CAO Qinghua, MEI Changtong, et al. Research progress of functional composites constructed from three-dimensional structural wood with high porosity[J]. Acta Materiae Compositae Sinica,2020,37(8):1796-1804(in Chinese).
|
[2] |
郭宇, 李超, 李英洁, 等. 木材细胞壁与木材力学性能及水分特性之间关系研究进展[J]. 林产工业, 2019, 46(8):14-18.
GUO Yu, LI Chao, LI Yingjie, et al. Research progress on the relationship between wood cell wall and wood mechanical properties and water properties[J]. Forest Products Industry,2019,46(8):14-18(in Chinese).
|
[3] |
曾其蕴, 李世红, 周本濂. 生物复合材料的特征及仿生的探讨[J]. 复合材料学报, 1993(1):1-7.
ZENG Qiyun, LI Shihong, ZHOU Benlian. Discussion on and bionics of biological composites[J]. Acta Materiae Compositae Sinica,1993(1):1-7(in Chinese).
|
[4] |
朱越骅. 中山杉木材宏观与微观特征及湿热形变机理[D]. 南京: 南京林业大学, 2020.
ZHU Yuehua. Macro and micro characteristics and hygrothermal deformation mechanism of Zhongshan fir wood[D]. Nanjing: Nanjing Forestry University, 2020(in Chinese).
|
[5] |
安鑫. 毛竹纤维细胞壁微纤丝取向与超微构造研究[D]. 北京: 中国林业科学研究院, 2016.
AN Xin. Study on microfibril orientation and ultrastructure of fiber cell wall in moso bamboo[D]. Beijing: Chinese Academy of Forestry, 2016(in Chinese).
|
[6] |
孙海燕. 杉木无性系木材力学性质及其与微观结构相关性研究[D]. 北京: 中国林业科学研究院, 2019.
SUN Haiyan. Study on wood mechanical properties of Chinese firclones and their correlation with microstructure[D]. Beijing: Chinese Academy of Forestry Sciences, 2019(in Chinese).
|
[7] |
SCHULGASSER K, WITZTUM A. On the strength of herbaceous vascular plant stems[J]. Annals of Botany,1997,80(1):35-44. doi: 10.1006/anbo.1997.0404
|
[8] |
REITERER A, LICHTENEGGER H, TSCHEGG S, et al. Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls[J]. Philosophical Magazine A,1999,79(9):2173-2184. doi: 10.1080/01418619908210415
|
[9] |
李坚, 甘文涛, 王立娟. 木材仿生智能材料研究进展[J]. 木材科学与技术, 2021, 35(4):1-14.
LI Jian, GAN Wentao, WANG Lijuan. Research progress of wood bionic intelligent materials[J]. Wood Science and Technology,2021,35(4):1-14(in Chinese).
|
[10] |
方文彬, 林云, 罗建举, 等. 火炬松速生材构造变异规律的研究[J]. 中南林学院学报, 1995(1):13-19.
FANG Wenbin, LIN Yun, LUO Jianju, et al. Study on structural variation of fast-growing wood of loblolly pine[J]. Journal of Central South Forestry University,1995(1):13-19(in Chinese).
|
[11] |
KOSEI A, MAYU M, KEISUKE T, et al. Dependence of Poisson’s ratio and Young’s modulus on microfibril angle (MFA) in wood[J]. Holzforschung,2018,72(4):321-327. doi: 10.1515/hf-2017-0091
|
[12] |
赵彻. 异质材料与微结构耦合仿生设计及其3D打印[D]. 长春: 吉林大学, 2017.
ZHAO Che. Bionic design and 3D printing of heterogeneous materials and microstructure coupling[D]. Changchun: Jilin University, 2017(in Chinese).
|
[13] |
FRATZL P, BURGERT I, KECKES J. Mechanical model for the deformation of the wood cell wall[J]. Zeitschrift Für Metallkunde,2004,95(7):579-584.
|
[14] |
DENG Q, LI S, CHEN Y. Mechanical properties and failure mechanism of wood cell wall layers[J]. Computational Materials Science,2012,62:221-226. doi: 10.1016/j.commatsci.2012.05.050
|
[15] |
YE W G, DOU H, CHENG Y Y, et al. Self-sensing properties of 3D printed continuous carbon fiber-reinforced PLA/TPU honeycomb structures during cyclic compression[J]. Materials Letters,2022,317:132077. doi: 10.1016/j.matlet.2022.132077
|
[16] |
房鑫卿. 3D打印技术的发展历程及应用前景[J]. 轻工科技, 2019(5):77-78.
FANG Xinqing. Development process and application prospect of 3D printing technology[J]. Light Industry Science and Technology,2019(5):77-78(in Chinese).
|
[17] |
刘俊, 孙璐姗, 王钱钱, 等. 3D打印生物质基复合材料研究进展及应用前景[J]. 生物产业技术, 2017(3): 68-81.
LIU Jun, SUN Lushan, WANG Qianqian, et al. Research progress and application prospect of 3D printing biomass matrix composites[J]. Biotechnology, 2017(3): 68-81(in Chinese).
|
[18] |
郭少豪, 吕振. 3D打印改变世界的新机遇新浪潮[J]. 中国科技信息, 2013, 484(23):147.
GUO Shaohao, LV Zhen. New opportunities and new wave of 3D printing changing the world[J]. China Science and Technology Information,2013,484(23):147(in Chinese).
|
[19] |
赵萍, 蒋华, 周芝庭. 熔融沉积快速成型工艺的原理及过程[J]. 机械制造与自动化, 2003(5):17-18. doi: 10.3969/j.issn.1671-5276.2003.05.006
ZHAO Ping, JIANG Hua, ZHOU Zhiting. Principle and process of melt deposition rapid prototyping[J]. Mechanical Manufacturing and Automation,2003(5):17-18(in Chinese). doi: 10.3969/j.issn.1671-5276.2003.05.006
|
[20] |
李仲阳. 回转式FDM连续挤出喷头[J]. 机械制造, 2002(2):29-30. doi: 10.3969/j.issn.1000-4998.2002.02.012
LI Zhongyang. Rotary FDM continuous extrusion nozzle[J]. Machinery Manufacturing,2002(2):29-30(in Chinese). doi: 10.3969/j.issn.1000-4998.2002.02.012
|
[21] |
QIN D X, SANG L, ZHANG Z H, et al. Compression performance and deformation behavior of 3D-printed PLA-based lattice structures[J]. Polymers,2022,14(5):1062. doi: 10.3390/polym14051062
|
[22] |
周意诚, 刘爱红, 赵巧玲, 等. 3维打印用聚乳酸材料的改性研究进展[J]. 化工新型材料, 2021, 49(3):216-220.
ZHOU Yicheng, LIU Aihong, ZHAO Qiaoling, et al. Research progress on modification of polylactic acid materials for 3D printing[J]. New Chemical Materials,2021,49(3):216-220(in Chinese).
|
[23] |
颜家强, 戢德贤, 杨桂花, 等. 微晶纤维素的制备方法及其应用领域概述[J]. 中华纸业, 2021, 42(10):8-13.
YAN Jiaqiang, YUAN Dexian, YANG Guihua, et al. Overview of preparation methods and application fields of microcrystalline cellulose[J]. Zhonghua Paper,2021,42(10):8-13(in Chinese).
|
[24] |
XIAN X J, WANG X F, ZHU Y C, et al. Effects of MCC content on the structure and performance of PLA/MCC biocomposites[J]. Journal of Polymers and the Environment, 2018, 26: 3484-3492.
|
[25] |
American Society for Testing and Materials. Standard test method for tensile properties of plastics: ASTM D638-03[S]. West Conshohocken: ASTM International, 2004.
|
[26] |
中国国家标准化管理委员会. 塑料压缩性能试验方法: GB/T 1041—2008[S]. 北京: 中国标准出版社, 2009.
Standardization Administration of the People's Republic of China. Test method for compressive properties of plastics: GB/T 1041—2008[S]. Beijing: China Standards Press, 2009(in Chinese).
|