Volume 40 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
HOU Xueyan, WEN Hua, ZHAO Haitao, et al. Modified diatomite with enhanced moisture-regulating by surface hydrophobicity and its effect on water vapor permeability of polyurethane film[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 929-939. doi: 10.13801/j.cnki.fhclxb.20220414.001
Citation: HOU Xueyan, WEN Hua, ZHAO Haitao, et al. Modified diatomite with enhanced moisture-regulating by surface hydrophobicity and its effect on water vapor permeability of polyurethane film[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 929-939. doi: 10.13801/j.cnki.fhclxb.20220414.001

Modified diatomite with enhanced moisture-regulating by surface hydrophobicity and its effect on water vapor permeability of polyurethane film

doi: 10.13801/j.cnki.fhclxb.20220414.001
  • Received Date: 2022-02-11
  • Accepted Date: 2022-04-04
  • Rev Recd Date: 2022-03-31
  • Available Online: 2022-04-15
  • Publish Date: 2023-02-15
  • Waterborne polyurethane (PU) is a kind of environment-friendly coating material, widely used in leather, textile, construction coating and other fields. As a coating for leather and textile, the water vapor permeability (WVP) of polyurethane determines the wearing comfort of clothing. However, the water vapor permeability of conventional waterborne polyurethane is poor and needs to be modified to obtain coatings with excellent WVP. CaCl2 and Heptafluorodecyl trimethoxysilane (FAS-17) were used to modify diatomite to prepare hydrophobic diatomite base materials. The effects of modification conditions on the structure and properties of diatomite were investigated. The modified diatomite with excellent performance was combined with PU emulsion and the WVP of composite film was studied. The results indicate that the diatomite modified with 30wt%CaCl2 and 0.8wt%FAS-17 present the best comprehensive performance with increased specific surface area and pore structure. The moisture-regulating performance is improved and further enhanced by surface hydrophobic modification of FAS-17. After modified diatomite FAS-17-CaCl2-D with best performance is combined with PU, the WVP of FAS-17-CaCl2-D/PU composite film increase first then decrease with the increasing of FAS-17-CaCl2-D dosage, and the hydrophobicity is improved. The composite PU film with 1% of FAS-17-CaCl2-D shows the largest WVP, which increased by 16.3% compared with pure PU film. The SEM-EDS reveal that the the surface and cross section of FAS-17-CaCl2-D/PU composite film appear the characteristic elements of FAS-17-CaCl2-D such as Si, Ca and F. The pores appeared at the interface between PU and FAS-17-CaCl2-D provided channels for the transfer of water vapor, resulting in improved WVP. The WVP enhanced PU in this work are expected to be applied in textile and leather coatings to improve the thermal comfort.


  • loading
  • [1]
    LOSIC D, MITCHELL J G, VOELCKER N H. Diatomaceous lessons in nanotechnology and advanced materials[J]. Advanced Materials,2009,21(29):2947-2958. doi: 10.1002/adma.200803778
    FAN H, REN Q, WANG S, et al. Synthesis of the Ag/Ag3PO4/diatomite composites and their enhanced photocatalytic activity driven by visible light[J]. Journal of Alloys and Compounds,2019,775:845-852. doi: 10.1016/j.jallcom.2018.10.152
    LIU G, ABUKHADRAM R, ELSHERBEENY A M, et al. Insight into the photocatalytic properties of diatomite@Ni/NiO composite for effective photo-degradation of malachite green dye and photo-reduction of Cr(VI) under visible light[J]. Journal of Environmental Management,2020,254:109799-109808. doi: 10.1016/j.jenvman.2019.109799
    MAO Z, ZHANG H, LI Y, et al. Preparation and characterization of composite scallop shell powder-based and diatomite-based hygroscopic coating materials with metal-organic framework for indoor humidity regulation[J]. Jour-nal of Building Engineering,2021,43:103122-103133. doi: 10.1016/j.jobe.2021.103122
    MUJTABA M, FERNÁNDEZ-MARÍN R, ROBLES E, et al. Understanding the effects of copolymerized cellulose nanofibers and diatomite nanocomposite on blend chitosan films[J]. Carbohydrate Polymers,2021,271:118424-118436. doi: 10.1016/j.carbpol.2021.118424
    DOBOR J, PER N, VARGA I, et al. A new carbon-diatomite earth composite adsorbent for removal of heavy metals from aqueous solutions and a novel application idea[J]. Microporous and Mesoporous Materials,2015,217:63-70. doi: 10.1016/j.micromeso.2015.06.004
    XIA P, WANG X, WANG X, et al. Struvite crystallization combined adsorption of phosphate and ammonium from aqueous solutions by mesoporous MgO-loaded diatomite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2016,506:220-227. doi: 10.1016/j.colsurfa.2016.05.101
    孔伟, 杜玉成, 卜仓友, 等. 硅藻土基调湿材料的制备与性能研究[J]. 非金属矿, 2011, 34(1):57-59, 62. doi: 10.3969/j.issn.1000-8098.2011.01.017

    KONG Wei, DU Yucheng, BU Cangyou, et al. Study on preparation and performance of diatomite-based humidity controlling materials[J]. Non-Metallic Mines,2011,34(1):57-59, 62(in Chinese). doi: 10.3969/j.issn.1000-8098.2011.01.017
    LIU X, CHEN Z, YANG G, et al. Bioinspired ant-nest-like hierarchical porous material using CaCl2 as additive for smart indoor humidity control[J]. Industrial & Engineering Chemistry Research, 2019, 58: 7139-7145
    邓妮, 武双磊, 陈胡星. 氯化钙改性硅藻土的调湿性能[J]. 材料科学与工程学报, 2014, 32(4):493-498.

    DENG Ni, WU Shuanglei, CHEN Huxing. Humidity-control performance of diatomite modified by calcium chloride[J]. Journal of Materials Science and Engineering,2014,32(4):493-498(in Chinese).
    LIU X, CHEN Z, YANG G, et al. Colorful wall-bricks with superhydrophobic surfaces for enhanced smart indoor humidity control[J]. ACS Omega,2019,4(9):13896-13901. doi: 10.1021/acsomega.9b01588
    冯蕾, 楼岱, 冉泽, 等. 改性硅藻土对水泥基调湿材料性能的影响[J]. 硅酸盐学报, 2021, 40(1):180-186.

    FENG Lei, LOU Dai, RAN Ze, et al. Influence of modified diatomite on cement-based humidity control materials performance[J]. Bulletin of the Chinese Ceramic Society,2021,40(1):180-186(in Chinese).
    张磊, 张亚楠, 荣辉, 等. 基于溶胶凝胶法改性的硅藻土对水泥基材料性能的影响[J]. 材料导报, 2016, 30(8):120-126.

    ZHANG Lei, ZHANG Yanan, RONG Hui, et al. The impact of diatomite modified by sol-gel method on the performce of cement-based materials[J]. Materials Review,2016,30(8):120-126(in Chinese).
    CUI M, LI J, CHEN X, et al. A halogen-free, flame retardant, waterborne polyurethane coating based on the synergistic effect of phosphorus and silicon[J]. Progress in Organic Coatings,2021,158:106359-106370. doi: 10.1016/j.porgcoat.2021.106359
    SUN Z, WEN J, WANG W, et al. Polyurethane covalently modified polydimethylsiloxane (PDMS) coating with increased surface energy and re-coatability[J]. Progress in Organic Coatings,2020,146:105744-105755. doi: 10.1016/j.porgcoat.2020.105744
    XU W, ZHAO W, HAO L, et al. Synthesis and characterization of novel fluoroalkyl-terminated hyperbranched polyurethane latex[J]. Applied Surface Science,2018,436:1104-1112. doi: 10.1016/j.apsusc.2017.12.148
    WEN J, SUN Z, XIAN J, et al. Preparation and characteristics of waterborne polyurethane with various lengths of fluorinated side chains[J]. Applied Surface Science,2019,494:610-618. doi: 10.1016/j.apsusc.2019.07.170
    TIAN S, ZHANG P, FAN H, et al. Fabrication of retro-reflec-tive polyurethane via covalently embedding with amino-functionalized glass microspheres[J]. Progress in Organic Coatings,2018,115:115-121. doi: 10.1016/j.porgcoat.2017.10.026
    ZHANG P, XU P, FAN H, et al. Covalently functionalized graphene towards molecular-level dispersed waterborne polyurethane nanocomposite with balanced comprehen-sive performance[J]. Applied Surface Science,2019,471:595-606. doi: 10.1016/j.apsusc.2018.11.235
    CHEN Y, WANG R, ZHOU J, et al. Membrane formation temperature-dependent gas transport through thermo-sensitive polyurethane containing in situ-generated TiO2 nanoparticles[J]. Polymer,2011,52:1856-1867. doi: 10.1016/j.polymer.2011.02.021
    YAN K, LIU C, MA J. Dendritic fibrous nanosilica loaded chitosan for improving water vapor permeability and antibacterial properties of waterborne polyurethane acrylate membranes[J]. Journal of Cleaner Production,2021,291:125922-125929. doi: 10.1016/j.jclepro.2021.125922
    BAO Y, GAO L, FENG C, et al. Hollow flower-like ZnO: Synthesis, growth mechanism and application in polyacrylate[J]. Advanced Powder Technology, 2020, 31: 1975-1984
    BHUIYAN M A R, WANG L, SHAID A, et al. Polyurethane-aerogel incorporated coating on cotton fabric for chemical protection[J]. Progress in Organic Coatings, 2019, 131: 100-110.
    SI Y, WANG X, YAN C, et al. Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity[J]. Advanced Materials,2016,28:9512-9518. doi: 10.1002/adma.201603143
    WILLIAMS J T. Waterproof and water repellent textiles and clothing[M]. Cambridge: Woodhead Publishing, 2018.
    全国纺织品标准化技术委员会基础标准分会. 纺织品 织物透湿性试验方法 第1部分: 吸湿法: GB/T 12704.1—2009[S]. 北京: 中国标准出版社, 2009.

    Basic Standard Branch of National Technical Committee of Textile Standardization. Textile-Test method for water-vapor transmission of fabrics—Part 1: Desiccant method: GB/T 12704.1—2009[S]. Beijing: Standards Press of China, 2009(in Chinese).
    胡志波, 郑水林, 李渝, 等. 煅烧处理硅藻土的孔道结构及分形特征[J]. 硅酸盐学报, 2021, 49(7):1395-1402.

    HU Zhibo, ZHENG Shuilin, LI Yu, et al. Effect of calcination on pore structure and fractal characteristics of diatomite[J]. Journal of the Chinese Ceramic Society,2021,49(7):1395-1402(in Chinese).
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (344) PDF downloads(29) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint