Volume 40 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
ZHAO Junjie, TAO Wenwu, ZENG Lijian, et al. Investigation of the bonding performance of a protein dispersed carbon nanotube/epoxy adhesive[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 753-760. doi: 10.13801/j.cnki.fhclxb.20220412.003
Citation: ZHAO Junjie, TAO Wenwu, ZENG Lijian, et al. Investigation of the bonding performance of a protein dispersed carbon nanotube/epoxy adhesive[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 753-760. doi: 10.13801/j.cnki.fhclxb.20220412.003

Investigation of the bonding performance of a protein dispersed carbon nanotube/epoxy adhesive

doi: 10.13801/j.cnki.fhclxb.20220412.003
Funds:  Fundamental Research Funds for the Central Universities (2019kfyXJJS060)
  • Received Date: 2022-01-25
  • Accepted Date: 2022-04-04
  • Rev Recd Date: 2022-03-31
  • Available Online: 2022-04-13
  • Publish Date: 2023-02-15
  • Carbon nanotube (CNT)/epoxy resin can be widely used to bond advanced structural parts in the aerospace field due to its excellent mechanical and bonding properties. However, how to effectively reduce the agglomeration of carbon nanotubes and ensure low cost and environmental protection of the preparation process is the key to the practical application of the nano-binder. Therefore, this paper proposes a protein dispersed carbon nanotube reinforced epoxy resin adhesive and investigates its bonding performance. The results show that the soy protein isolate (SPI) after a certain acid or alkali denaturation treatment can effectively reduce the agglomeration of carbon nanotubes and significantly improve the bonding performance of epoxy resin. When the CNT loading is 0.1wt%, the bonding property of acid and alkali treated SPI-CNT/epoxy is increased by 26.6% and 26.7%. While the CNT loading increases to 0.3wt%, the bonding property enhancement of the two treated methods comes to 10.2% and 18.3%, the alkali method is 79% higher than the acid one.


  • loading
  • [1]
    YUDHANTO A, ALFANO M, LUBINEAU G. Surface preparation strategies in secondary bonded thermoset-based composite materials: A review[J]. Applied Science and Manufacturing,2021,147:106443. doi: 10.1016/j.compositesa.2021.106443
    AMITKUMAR R, ASOKAN R, JHANJI K P, et al. Investigation of tensile properties of carbon/epoxy composite joints with and without carbon nanotubes[J]. International Journal of Vehicle Structures Systems,2019,11(2):209-213.
    KAHRAMAN R, AL-HARTHI M. Moisture diffusion into aluminum powder-filled epoxy adhesive in sodium chloride solutions[J]. International Journal of Adhesion and Adhesives,2005,25(4):337-341. doi: 10.1016/j.ijadhadh.2004.10.003
    ALIAKBARI M, JAZANI O M, SOHRABIAN M, et al. Multi-nationality epoxy adhesives on trial for future nanocomposite developments[J]. Progress in Organic Coatings,2019,133:376-386. doi: 10.1016/j.porgcoat.2019.04.076
    HAO B, MU L, MA Q, et al. Stretchable and compressible strain sensor based on carbon nanotube foam/polymer nanocomposites with three-dimensional networks[J]. Composites Science and Technology,2018,163:162-170. doi: 10.1016/j.compscitech.2018.05.017
    GONG S, WU D, LI Y, et al. Temperature-independent piezoresistive sensors based on carbon nanotube/polymer nanocomposite[J]. Carbon,2018,137:188-195. doi: 10.1016/j.carbon.2018.05.029
    朱劲, 单人为, 李琴, 等. 几种常规改性方法对大豆分离蛋白化学结构的影响[J]. 浙江林业科技, 2014(2): 5-8.

    ZHU Jin, SHAN Renwei, LI Qin, et al. Effect of conventional modification methods on chemical structure of soybean protein[J]. Journal of Zhejiang Forestry Science and Technology, 2014(2): 5-8(in Chinese).
    CHEN J J, YAN L F, SONG W Y. Interfacial characteristics of carbon nanotube-polymer composites: A review[J]. Applied Science and Manufacturing,2018,114:149-169. doi: 10.1016/j.compositesa.2018.08.021
    ATA M S, POON R, SYED A M, et al. New developments in non-covalent surface modification, dispersion and electrophoretic deposition of carbon nanotubes[J]. Carbon,2018,130:584-598. doi: 10.1016/j.carbon.2018.01.066
    KUMAR P, SENGUPTA A, DEB A K S, et al. Poly(amidoamine) dendrimer functionalized carbon nanotube for efficient sorption of trivalent F-elements: A comparison between 1st and 2nd generation[J]. Chemitry Select,2017,2(3):975-985. doi: 10.1002/slct.201601550
    ZHU J, KIM J D, PENG H, et al. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization[J]. Nano Letters,2003,3(8):1107-1113. doi: 10.1021/nl0342489
    LI C C, LIN J L, HUANG S J. A new and acid-exclusive method for dispersing carbon multi-walled nanotubes in aqueous suspensions[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2007,297(1-3):275-281.
    MA P C, SIDDIQUI N A, MAROM G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review[J]. Composites Part A: Applied Science and Manufacturing,2010,41(10):1345-1367. doi: 10.1016/j.compositesa.2010.07.003
    MADNI I, HWANG C Y, PARK S D, et al. Mixed surfactant system for stable suspension of multiwalled carbon nano-tubes[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2010,358(1-3):101-107. doi: 10.1016/j.colsurfa.2010.01.030
    HASHIM P K, BERGUEIRO J, MEIJER E W, et al. Supramolecular polymerization: A conceptual expansion for innovative materials[J]. Progress in Polymer Science,2020,105:101250. doi: 10.1016/j.progpolymsci.2020.101250
    GHOSH A, RAO K V, VOGGU R, et al. Non-covalent functionalization, solubilization of graphene and single-walled carbon nanotubes with aromatic donor and acceptor molecules[J]. Chemical Physics Letters,2010,488(4-6):198-201. doi: 10.1016/j.cplett.2010.02.021
    PIAO L, LIU Q, LI Y, et al. Adsorption of L-phenylalanine on single-walled carbon nanotubes[J]. Journal of Physical Chemistry C,2008,112(8):2857-2863. doi: 10.1021/jp077047s
    WANG Z, CHEN Y. Supramolecular hydrogels hybridized with single-walled carbon nanotubes[J]. Macromolecules,2007,40(9):3402-3407. doi: 10.1021/ma0702593
    KINLOCH I A, SUHR J, LOU J, et al. Composites with carbon nanotubes and graphene: An outlook[J]. Science,2018,362(6414):547-553. doi: 10.1126/science.aat7439
    SUBRAMANIAN A S, TEY J N, ZHANG L Y, et al. Synergistic bond strengthening in epoxy adhesives using polydopa-mine/MWCNT hybrids[J]. Polymer, 2016, 82: 285-294.
    GHOSH P K, PATEL A, KUMAR K. Adhesive joining of copper using nanofiller composite adhesive[J]. Polymer,2016,87:159-169. doi: 10.1016/j.polymer.2016.02.006
    LEE J, KIM J. Improvement of thermal conductivity and latent heat of cellulose film using surfactant and surface-treated CNT with stearic acid[J]. Composites Part A: Applied Science and Manufacturing,2022,156:106897.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (964) PDF downloads(41) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint