Volume 40 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
JI Dexian, LIN Zhaoyun, CHEN Jiachuan, et al. Preparation of catalytic composite copper oxide nanoparticles (CuO NPs)@cellulose nanofiber (CNF)-Si-N(OH)2 and its catalytic reduction of 4-nitrophenol[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1663-1675. doi: 10.13801/j.cnki.fhclxb.20220406.002
Citation: JI Dexian, LIN Zhaoyun, CHEN Jiachuan, et al. Preparation of catalytic composite copper oxide nanoparticles (CuO NPs)@cellulose nanofiber (CNF)-Si-N(OH)2 and its catalytic reduction of 4-nitrophenol[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1663-1675. doi: 10.13801/j.cnki.fhclxb.20220406.002

Preparation of catalytic composite copper oxide nanoparticles (CuO NPs)@cellulose nanofiber (CNF)-Si-N(OH)2 and its catalytic reduction of 4-nitrophenol

doi: 10.13801/j.cnki.fhclxb.20220406.002
Funds:  Key R&D projects in Shandong Province (2021CXGC010601); Project to Attract High Level Foreign Experts (G2021024005L); Taishan Scholars Project
  • Received Date: 2022-03-02
  • Accepted Date: 2022-03-26
  • Rev Recd Date: 2022-03-20
  • Available Online: 2022-04-07
  • Publish Date: 2023-03-15
  • In view of the low efficiency and poor catalytic activity of 4-nitrophenol (4-NP) catalysts for degradation of industrial wastewater, eucalyptus wood bleaching chemical pulp was used as the raw material and treated with ultrafine grinder and high pressure homogenizer to produce cellulose nanofiber (CNF) with the diameter of 50-100 nm and the length of 1500-2000 nm. Then, copper oxide nanoparticles (CuO NPs) were in-situ loaded onto CNF, 3-chloropropyltrimethoxysilane (CPTES) and diethanolamine (DEA) were added for grafting reaction to obtain the catalytic composite of CuO NPs@CNF-Si-N(OH)2. The catalytic composite was characterized with Zeta potential, FTIR, XRD, XPS, thermal gravimetric analysis and morphology analysis. The results show that CuO NPs are in-situ loaded on CNF, and the grafting of amine groups can make the loading of CuO NPs more uniform and stable. In addition, it is also found that CuO NPs@CNF-Si-N(OH)2 show the optimal catalytic performance with 20wt% DEA. Furthermore, 98.39% of 4-NP is catalytically reduced after 180 s, and the reaction fit the pseudo-first order kinetics equation, in which the reacting constant reaches 5.50×10−3 s−1 and the turnover frequency achieves 1723.24 h−1. The composite catalysts of CuO NPs@CNF-Si-N(OH)2 exhibite excellent recycling performance, and 94.42% of 4-NP can be catalytically reduced after a recycling time of 8. The results can provide a new idea and approach for the preparation of high-performance catalytic composite.

     

  • loading
  • [1]
    杨晓闪. SiO2@C负载Ni、Cu催化剂的制备及性能研究[D]. 郑州: 郑州大学, 2019.

    YANG Xiaoshan. Preparation and properties of SiO2@C supported Ni and Cu catalysts[D]. Zhengzhou: Zhengzhou University, 2019(in Chinese).
    [2]
    WAN N, GU J D, YAN Y. Degradation of p-nitrophenol by chromobacter xylosoxidans Ns isolated from wetland sediment[J]. International Biodeterioration & Biodegradation,2007(59):90-96.
    [3]
    梁艳莉, 马剑琪, 郭少波. CoFe2O4@PDA@Pt核壳型磁性复合材料的制备及催化性能[J]. 复合材料学报, 2021, 38(5):1551-1557.

    LIANG Yanli, MA Jianqi, GUO Shaobo. Preparation and catalytic properties of CoFe2 O4@PDA@Pt magnetic composite with core shell structure[J]. Acta Materiae Compositae Sinica,2021,38(5):1551-1557(in Chinese).
    [4]
    林兆云, 戢德贤, 杨桂花, 等. 纤维素基金属纳米粒子复合催化剂的制备与应用[J]. 复合材料学报, 2022, 39(3):977-988.

    LIN Zhaoyun, JI Dexian, YANG Guihua, et al. Preparation and application of cellulose-based metal nanoparticles composite catalysts[J]. Acta Materiae Compositae Sinica,2022,39(3):977-988(in Chinese).
    [5]
    ZHOU Z, LU C, WU X, et al. Cellulose nanocrystals as a novel support for CuO nanoparticles catalysts: Facile synthesis and their application to 4-nitrophenol reduction[J]. RSC Advances,2013,3(48):26066-26073. doi: 10.1039/c3ra43006e
    [6]
    CHEN L, CAO W J, QUINLAN P, et al. Sustainable catalysts from gold-loaded polyamidoamine dendrimer-cellulose nanocrystals[J]. ACS Sustainable Chemistry & Engineering,2015,3(5):978-985.
    [7]
    LAM E, HRAPOVIC S, MAJID E, et al. Catalysis using gold nanoparticles decorated on nanocrystalline cellulose[J]. Nanoscale,2012,4(3):997-1002. doi: 10.1039/c2nr11558a
    [8]
    王海英, 刘志明, 毕晓欣, 等. 桉木浆纳米纤维素制备优化条件初探[J]. 江苏农业科学, 2012, 40(7):242-245. doi: 10.3969/j.issn.1002-1302.2012.07.092

    WANG Haiying, LIU Zhiming, BI Xiaoxin, et al. Preliminary study on optimum preparation conditions of nanocrystalline cellulose from Eucalyptus pulp[J]. Jiangsu Agricultural Sciences,2012,40(7):242-245(in Chinese). doi: 10.3969/j.issn.1002-1302.2012.07.092
    [9]
    PINTO R J B, MÁRCIA C, NETO C P, et al. Growth and chemical stability of copper nanostructures on cellulosic fibers[J]. European Journal of Inorganic Chemistry,2012,2012(31):5043-5049. doi: 10.1002/ejic.201200605
    [10]
    GOY-LÓPEZ S, TABOADA P, CAMBON A, et al. Modulation of size and shape of Au nanoparticles using amino-X-shaped poly(ethylene oxide)-poly(propylene oxide) Block Copolymers[J]. The Journal of Physical Chemistry B,2010,114(1):66-76. doi: 10.1021/jp908569z
    [11]
    倪镜博, 刘如一, 张明, 等. 原位聚合法制备纳米核-壳型PS-CHO@RGO复合微球及其催化活化过硫酸氢钾降解亚甲基蓝[J]. 复合材料学报, 2021, 38(7):2132-2139.

    NI Jingbo, LIU Ruyi, ZHANG Ming, et al. Preparation of nano core-shell PS-CHO@RGO composite microspheres by in-situ polymerization as a potassium hydrogen persulfate catalytic activator for methylene blue degradation[J]. Acta Materiae Compositae Sinica,2021,38(7):2132-2139(in Chinese).
    [12]
    ARMELAO L, BARRECA D, BERTAPELLE M, et al. A sol-gel approach to nanophasic copper oxide thin films[J]. Thin Solid Films,2003,442(1):48-52.
    [13]
    VAINIO U, PIRKKALAINEN K, KISKO K, et al. Copper and copper oxide nanoparticles in a cellulose support studied using anomalous small-angle X-ray scattering[J]. The European Physical Journal D,2007,42(1):93-101. doi: 10.1140/epjd/e2007-00015-y
    [14]
    FAN J C, XIE Z. Effects of substrate temperature on structural, electrical and optical properties of As-doped ZnO films[J]. Materials Science & Engineering B,2008,150(1):61-65.
    [15]
    BHATTACHARJEE A, AHMARUZZAMAN M. Green synthesis of 2 D CuO nanoleaves (NLs) and its application for the reduction of pnitrophenol[J]. Materials Letters,2015,161:79-82. doi: 10.1016/j.matlet.2015.08.061
    [16]
    REDDY K R. Green synthesis, morphological and optical studies of CuO nanoparticles[J]. Journal of Molecular Structure,2017,1150:553-557. doi: 10.1016/j.molstruc.2017.09.005
    [17]
    SAITO T, KIMURA S, NISHIYAMA Y, et al. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose[J]. Biomacromolecules,2007,8(8):2485-2491. doi: 10.1021/bm0703970
    [18]
    ISOGAI A, ATALLA R H. Dissolution of cellulose in aqueous NaOH solutions[J]. Cellulose,1998,5(4):309-319. doi: 10.1023/A:1009272632367
    [19]
    叶瑞荣, 汪朝阳, 杨凯, 等. 二乙醇胺改性聚乳酸的直接熔融聚合法合成及其表征[J]. 化学通报, 2009, 72(7):637-643.

    YE Ruirong, WANG Chaoyang, YANG Kai, et al. Direct melt polycondensation and characterization of polylactic acid modified by diethanolamine[J]. Chemistry,2009,72(7):637-643(in Chinese).
    [20]
    LIONEL M, ALEXIS C, HEINRICH H. Polymer adsorption on iron oxide nanoparticles for one-step amino-functionalized silica encapsulation[J]. Journal of Nanomaterials,2015,16(1):239.
    [21]
    KHAN S B, ALAMRY K A, BIFARI E N, et al. Assessment of antibacterial cellulose nanocomposite for water permeability and salt rejection[J]. Journal of Industrial & Engineering Chemistry,2015,24:266-275.
    [22]
    TANG J, SHI Z, BERRY R M, et al. Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin[J]. Industrial & Engineering Chemistry Research,2015,54(13):3299-3308.
    [23]
    CAO M, HU C, WANG Y, ET AL. A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods[J]. Chemical Communications,2003(15):1884-1885. doi: 10.1039/b304505f
    [24]
    MARÍNPAREJA N, CANTINI M, GONZALEZGARCIA C, et al. Different organization of type I collagen immobilized on silanized and nonsilanized titanium surfaces affects fibroblast adhesion and fibronectin secretion[J]. ACS Applied Materials & Interfaces,2015,7(37):20667-20677.
    [25]
    BOUAZIZI N, BARGOUGUI R, THEBAULT P, ET AL. Development of a novel functional core-shell-shell nanoparticles: From design to anti-bacterial applications[J]. Journal of Colloid & Interface Science,2017,513:726-735.
    [26]
    WANG C, WANG H, YU H. Preparation and application of biomimetic superhydrophobic silica and polyurethane composite coating[J]. International Journal of Surface Science and Engineering,2015,9(6):510-519. doi: 10.1504/IJSURFSE.2015.072832
    [27]
    LIU B H, LI Z P. A review: Hydrogen generation from borohydride hydrolysis reaction[J]. Journal of Power Sources,2009,187(2):527-534. doi: 10.1016/j.jpowsour.2008.11.032
    [28]
    YANG Y, CHEN Z, WU X, et al. Nanoporous cellulose membrane doped with silver for continuous catalytic decolorization of organic dyes[J]. Cellulose,2018,25(4):2547-2558. doi: 10.1007/s10570-018-1710-x
    [29]
    BAE S, GIM S, KIM H, et al. Effect of NaBH4 on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p-nitrophenol[J]. Applied Catalysis B: Environmental,2016,182:541-549. doi: 10.1016/j.apcatb.2015.10.006
    [30]
    LI J, LIU C Y, LIU Y. Au/graphene hydrogel: Synthesis, characterization and its use for catalytic reduction of 4-nitrophenol[J]. Journal of Materials Chemistry,2012,22(17):8426-8430. doi: 10.1039/c2jm16386a
    [31]
    WU X, LU C, ZHOU Z, et al. Strategy for synthesizing porous cellulose nanocrystal supported metal nanocatalysts[J]. ACS Sustainable Chemistry & Engineering,2016,1(1):71-79.
    [32]
    KOGA H, TOKUNAGA E, HIDAKA M, et al. Topochemical synthesis and catalysis of metal nanoparticles exposed on crystalline cellulose nanofibers[J]. Chemical Communications,2010,46(45):8567-8569. doi: 10.1039/c0cc02754e
    [33]
    WU X, LU C, ZHOU Z, et al. Green synthesis and formation mechanism of cellulose nanocrystal-supported gold nanoparticles with enhanced catalytic performance[J]. Environmental Science Nano,2014,1(1):71-79. doi: 10.1039/c3en00066d
    [34]
    AN X, LONG Y, NI Y. Cellulose nanocrystal/hexadecyltrimethylammonium bromide/silver nanoparticle composite as a catalyst for reduction of 4-nitrophenol[J]. Carbohydrate Polymers[J],2017,156:253-258. doi: 10.1016/j.carbpol.2016.08.099
    [35]
    DUAN C, LIU C, MENG X, et al. Fabrication of carboxymethylated cellulose fibers supporting Ag NPs@MOF-199 s nanocatalysts for catalytic reduction of 4-nitrophenol[J]. Applied Organometallic Chemistry,2019,33(5):4865. doi: 10.1002/aoc.4865
    [36]
    AHMAD I, KAMAL T, KHAN S B, et al. An efficient and easily retrievable dip catalyst based on silver nanoparticles/chitosan-coated cellulose filter paper[J]. Cellulose,2016,23(6):3577-3588.
    [37]
    XU P, CEN C, CHEN N, et al. Facile fabrication of silver nanoparticles deposited cellulose microfiber nanocompo-site for catalytic application[J]. Journal of Colloid and Interface Science,2018,526:194-200. doi: 10.1016/j.jcis.2018.04.045
    [38]
    XIONG R, LU C, WANG Y, et al. Nanofibrillated cellulose as the support and reductant for the facile synthesis of Fe3O4/Ag nanocomposite with catalytic and antibacterial activity[J]. Journal of Materials Chemistry A,2013,1(47):14910-14918. doi: 10.1039/c3ta13314a
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (1257) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return