Volume 40 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
LI Xuan, ZHAO Ke, LIU Jinling. High-temperature compressive properties of 20vol% volume fraction nano-Al2O3 particles reinforced aluminum matrix composite[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1118-1128. doi: 10.13801/j.cnki.fhclxb.20220401.001
Citation: LI Xuan, ZHAO Ke, LIU Jinling. High-temperature compressive properties of 20vol% volume fraction nano-Al2O3 particles reinforced aluminum matrix composite[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1118-1128. doi: 10.13801/j.cnki.fhclxb.20220401.001

High-temperature compressive properties of 20vol% volume fraction nano-Al2O3 particles reinforced aluminum matrix composite

doi: 10.13801/j.cnki.fhclxb.20220401.001
Funds:  Key Research and Development Project in Sichuan Province (2020YFG0140)
  • Received Date: 2022-02-11
  • Accepted Date: 2022-03-23
  • Rev Recd Date: 2022-03-20
  • Available Online: 2022-04-02
  • Publish Date: 2023-02-15
  • To improve the high-temperature mechanical properties of aluminum-based materials with the aim of satisfying application requirements for the structural components in aerospace above 573 K, a novel aluminum matrix composite reinforced with 20vol% volume fraction nano-Al2O3 particles (146 nm) was prepared via high energy ball milling followed by vacuum hot pressing, and its microstructures and high-temperature compressive properties were investigated. The results show that, nano-Al2O3 particles are uniformly distributed in the ultrafine-grained Al matrix, and the resultant composite is fully densified. The composite exhibits superior high-temperature compressive properties: As the strain rate is fixed as 0.001/s, the high-temperature compressive strength reaches 380 MPa at temperature of 473 K, still maintains a high value of 250 MPa when the temperature increased to 673 K, which is at least onefold higher than that of traditional Al-based materials. By establishing constitutive model based on thermal activation, it is also found that the composite shows high stress exponent which is 30 and high apparent activation energy which is 204.02 kJ/mol. This may be attributed to the addition of high volume fraction nanoparticles into Al matrix which not only anchors Al grain boundaries and enables thermal stable interface between nanoparticles and the Al matrix and thus significantly enhance the thermal stability of the microstructure, but also can impede the dislocation motion effectively as well as Al grain boundary, thereby increasing the threshold stress for hot deformation which ranges from 190.6 MPa to 328.4 MPa as the temperature is in the range of 473 K to 673 K. The hot deformation process of this composite can be properly explained by substructure invariant model.

     

  • loading
  • [1]
    高一涵, 刘刚, 孙军. 耐热铝基合金研究进展: 微观组织设计与析出策略[J]. 金属学报, 2021, 57(2):129-149. doi: 10.11900/0412.1961.2020.00347

    GAO Yihan, LIU Gang, SUN Jun. Recent progress in high-temperature resistant aluminum-based alloys: Microstructural design and precipitation strategy[J]. Acta Metallurgica Sinica,2021,57(2):129-149(in Chinese). doi: 10.11900/0412.1961.2020.00347
    [2]
    GENG R, QIU F, JIANG Q C. Reinforcement in Al matrix composites: A review of strengthening behavior of nano-sized particles[J]. Advanced Engineering Materials,2018,20(9):1701089. doi: 10.1002/adem.201701089
    [3]
    SHEN B, DENG L, WANG X Y. A new dynamic recrystallisation model of an extruded Al-Cu-Li alloy during high-temperature deformation[J]. Materials Science & Engineering A,2015,625:288-295.
    [4]
    ASGHARZADEH H, SIMCHI A, KIM H S. High-tempera-ture deformation and structural restoration of a nanostructured Al alloy[J]. Scripta Materialia,2012,66(11):911-914. doi: 10.1016/j.scriptamat.2012.02.026
    [5]
    SERAJZADEH S, MOTLAGHS S, MIRBAGHERI S M H, et al. Deformation behavior of AA2017-SiCp in warm and hot deformation regions[J]. Materials and Design,2015,67:318-323. doi: 10.1016/j.matdes.2014.11.042
    [6]
    HAN B Q, LAVERNIA E J. High-temperature behavior of a cryomilled ultrafine-grained Al-7.5%Mg alloy[J]. Materials Science and Engineering A,2005,410:417-421.
    [7]
    OÑORO J. High-temperature mechanical properties of aluminum alloys reinforced with titanium diboride (TiB2) particles[J]. Rare Metals,2011,30(2):200-205. doi: 10.1007/s12598-011-0224-6
    [8]
    ASGHARZADEH H, SIMCHI A, KIM H S. Hot deformation of ultrafine-grained Al6063/Al2O3 nanocomposites[J]. Journal of Materials Science,2011,46(14):4994-5001. doi: 10.1007/s10853-011-5418-7
    [9]
    SAKAMOTO T, KUKEYA S, OHFUJI H. Microstructure and room and high temperature mechanical properties of ultrafine structured Al-5wt%Y2O3 and Al-5wt%La2O3 nanocomposites fabricated by mechanical alloying and hot pressing[J]. Materials Science & Engineering A,2019,748:428-433.
    [10]
    RAZAVI-HESABI Z, SANJARI M, SIMCHI A, et al. Effect of alumina nanoparticles on hot strength and deformation behavior of Al-5vol%Al2O3 nanocomposite: Experimental study and modelling[J]. Journal of Nanoscience and Nanotechnology,2010,10(4):2641-2645. doi: 10.1166/jnn.2010.1408
    [11]
    WANG L, QIU F, ZHAO Q L, et al. Simultaneously increasing the elevated-temperature tensile strength and plasticity of in situ nano-sized TiCx/Al-Cu-Mg composites[J]. Materials Characterization,2017,125:7-12. doi: 10.1016/j.matchar.2017.01.013
    [12]
    ZHOU Y T, ZAN Y N, ZHENG S J, et al. Thermally stable microstructures and mechanical properties of B4C-Al composite with in-situ formed Mg(Al)B2[J]. Journal of Materials Science & Technology,2019,35(9):1825-1830.
    [13]
    ASGHARZADEH H, KIM H S, SIMCHI A. Microstructure, strengthening mechanisms and hot deformation behavior of an oxide-dispersion strengthened UFG Al6063 alloy[J]. Materials Characterization,2013,75:108-114. doi: 10.1016/j.matchar.2012.10.007
    [14]
    ZHAO K, TANG D, LIU J L, et al. Structural evolution during mechanical milling of bimodal-sized Al2O3 particles reinforced aluminum matrix composite[J]. Acta Metallurgica Sinica,2018,31(4):423-430. doi: 10.1007/s40195-018-0714-8
    [15]
    LIU J L, HUANG X Y, ZHAO K, et al. Effect of reinforcement particle size on quasistatic and dynamic mechanical properties of Al-Al2O3 composites[J]. Journal of Alloys & Compounds,2019,797:1367-1371.
    [16]
    ZHAO K, DUAN Z Y, LIU J L, et al. Strengthening mechanisms of 15vol%Al2O3 nanoparticles reinforced aluminum matrix nanocomposite fabricated by high energy ball milling and vacuum hot pressing[J]. Acta Metallurgica Sinica (English Letters), 2021, 35(6): 915-921.
    [17]
    FARROKH B, KHAN A S. Grain size, strain rate, and temperature dependence of flow stress in ultra-fine grained and nanocrystalline Cu and Al: Synthesis, experiment, and constitutive modeling[J]. International Journal of Plasticity,2009,25(5):715-732. doi: 10.1016/j.ijplas.2008.08.001
    [18]
    JIN N P, ZHANG H, HAN Y, et al. Hot deformation behavior of 7150 aluminum alloy during compression at elevated temperature[J]. Materials Characterization,2009,60(6):530-536. doi: 10.1016/j.matchar.2008.12.012
    [19]
    MA X, ZHAO Y F, TIAN W J, et al. A novel Al matrix compo-site reinforced by nano-AlNp network[J]. Scientific Reports,2016,6(1):34919. doi: 10.1038/srep34919
    [20]
    LI Q, CHO J, XUE S C, et al. High temperature thermal and mechanical stability of high-strength nanotwinned Al alloys[J]. Acta Materialia,2019,165:142-152. doi: 10.1016/j.actamat.2018.11.011
    [21]
    ZHAO K, ZHU X X, LIU J L, et al. Superb high-temperature strength of aluminum-based nanocomposite with supra-nano stacking faults/twins[J]. Composites Communications,2021,25:100753. doi: 10.1016/j.coco.2021.100753
    [22]
    SELLARS C M, MCTEGART W J. On the mechanism of hot deformation[J]. Acta Metallurgica,1966,14(9):1136-1138. doi: 10.1016/0001-6160(66)90207-0
    [23]
    SENTHILKUMAR V, BALAJI A, NARAYANASAMY R. Analysis of hot deformation behavior of Al5083-TiC nanocomposite using constitutive and dynamic material models[J]. Materials and Design,2012,37:102-110. doi: 10.1016/j.matdes.2011.12.049
    [24]
    KAI X Z, ZHAO Y T, WANG A D, et al. Hot deformation behavior of in situ nano ZrB2 reinforced 2024Al matrix composite[J]. Composites Science and Technology,2015,116:1-8. doi: 10.1016/j.compscitech.2015.05.006
    [25]
    LIN Z, LI Y, MOHAMED F A. Creep and substructure in 5vol%SiC-2124Al composite[J]. Materials Science & Engi-neering A,2002,332(1-2):330-342.
    [26]
    MA Z Y, TJONG S C. Creep deformation characteristics of discontinuously reinforced aluminium-matrix compo-sites[J]. Composites Science & Technology,2001,61(5):771-786.
    [27]
    MOHAMED F A, LANGDON T G. Deformation mechanism maps based on grain size[J]. Metallurgical Transactions,1974,5(11):2339-2345.
    [28]
    MOHAMED F A, LANGDON T G. The transition from dislocation climb to viscous glide in creep of solid solution alloys[J]. Acta Metallurgica,1974,22(6):779-788. doi: 10.1016/0001-6160(74)90088-1
    [29]
    WEERTMAN J. Steady-state creep through dislocation climb[J]. Journal of Applied Physics,1957,28(3):362-364. doi: 10.1063/1.1722747
    [30]
    SHERBY O D, KLUNDT R H, MILLER A K. Flow stress, subgrain size, and subgrain stability at elevated tempera-ture[J]. Metallurgical Transactions A,1977,8(6):843-850. doi: 10.1007/BF02661565
    [31]
    GONG D, JIANG L T, GUAN J T, et al. Stable second phase: The key to high-temperature creep performance of particle reinforced aluminum matrix composite[J]. Materials Science & Engineering A,2020,770:138551.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (456) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return