Volume 40 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
LIU Jie, LI Zheng, LI Zhao, et al. Hardening mechanism and pore size analysis of new magnetic epoxy cement grout[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1025-1036. doi: 10.13801/j.cnki.fhclxb.20220324.002
Citation: LIU Jie, LI Zheng, LI Zhao, et al. Hardening mechanism and pore size analysis of new magnetic epoxy cement grout[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1025-1036. doi: 10.13801/j.cnki.fhclxb.20220324.002

Hardening mechanism and pore size analysis of new magnetic epoxy cement grout

doi: 10.13801/j.cnki.fhclxb.20220324.002
Funds:  National Natural Science Foundation (52079071; 51979151); Fund for the Opening of Key Laboratory of Geological Disaster in the Three Gorges Reservoir Area by the Ministry of Education (2020KDZ08); Research Fund for Excellent Dissertation of China Three Gorges University (2021BSPY016)
  • Received Date: 2022-01-18
  • Accepted Date: 2022-03-12
  • Rev Recd Date: 2022-03-10
  • Available Online: 2022-03-25
  • Publish Date: 2023-02-15
  • Conventional mortar can not meet the engineering filling requirements of anti-inclined fractures and defects, and a large number of bubbles will be introduced under the pressure of grouting, and the density of slurry can not be guaranteed. In view of this, a new magnetic epoxy cement (MEC) slurry was developed, which can realize anti-gravity grouting anchoring, guided flow, increase of slurry density and real-time control of slurry viscosity. The SEM,XRD and N2 adsorption tests were used to analyze the microstructure, hydration products and pore size of MEC slurry under different magnetic fields. The results show that the MEC slurry can be divided into the following two hardening processes: Epoxy curing and cement hydration. The solidified product encapsulate the hydration product and ionize with Ca2+ in ettringite (AFt) and Ca(OH)2 to form a complex to fill the tiny pores in the slurry. When the magnetic field intensity increases from 400 GS to 6000 GS, the pore area and pore number decrease rate reach 77.6% and 76.8% respectively. The test of N2 adsorption shows that the number of mesopores and macropores and the specific surface area decrease significantly with the addition of magnetic field. The magnetic grout is in line with H4 hysteresis loop and mainly represents as ink bottle pores. Based on magnetic dipole theory, the force of magnetic particles is simulated numerically. The analysis results show that the pore area can be effectively reduced when the magnetic field intensity is from 2000 GS to 6000 GS.


  • loading
  • [1]
    陈文, 刘永球, 仇学明. 锦屏水电站左岸帷幕灌浆试验与分析[J]. 水利水电技术, 2008, 39(9):22-25. doi: 10.3969/j.issn.1000-0860.2008.09.007

    CHEN Wen, LIU Yongqiu, QIU Xueming. Experiment and analysis of curtain grouting on left bank of Jinping hydropower station[J]. Water Resources and Hydro-power Engineering,2008,39(9):22-25(in Chinese). doi: 10.3969/j.issn.1000-0860.2008.09.007
    李小波, 吴莉, 祝华平. 锦屏一级水电站左岸深部裂缝岩体灌浆试验研究[J]. 水电站设计, 2009, 25(91):54-56.

    LI Xiaobo, WU Li, ZHU Huaping. Experimental study on grouting of deep fractured rock mass on the left bank of Jinping I hydropower station[J]. Design of Hydroelectric Power Station,2009,25(91):54-56(in Chinese).
    林宝玉, 吴绍章. 混凝土工程材料设计与施工[M]. 北京: 中国水利水电出版社, 1998.

    LIN Baoyu, WU Shaozhang. Concrete engineering material design and construction[M]. Beijing: China Water Power Press, 1998(in Chinese).
    SCHULZE J. Influence of water-cement ratio and cement content on the properties of polymer-modified mortars[J]. Cement and Concrete Research,1999,29(6):909-915. doi: 10.1016/S0008-8846(99)00060-5
    MA H, LI Z. Microstructures and mechanical properties of polymer modified mortars under distinct mechanisms[J]. Construction and Building Materials,2013,47:579-587.
    LIU S J, HU Q Q, ZHAO F Q, et al. Utilization of steel slag, iron tailings and fly ash as aggregates to prepare a polymer-modified waterproof mortar with a core-shell styrene-acrylic copolymer as the modifier[J]. Construction and Building Materials,2014,72:15-22. doi: 10.1016/j.conbuildmat.2014.09.016
    沈凡, 黄绍龙, 孙政, 等. 水性环氧树脂-水泥-乳化沥青复合胶结体系的硬化机理[J]. 中南大学学报(自然科学版), 2012, 43(1):105-110.

    SHEN Fan, HUANG Shaolong, SUN Zheng, et al. Hardening mechanism of waterborne epoxy-cement-emulsified asphalt bonding system[J]. Journal of Central South University,2012,43(1):105-110(in Chinese).
    李明, 徐文, 王康臣, 等. 高吸水树脂在水泥浆体硬化过程中的释水行为[J]. 建筑材料学报, 2022, 25(2): 111-116.

    LI Ming, XU Wen, WANG Kangchen, et al. Desorption behavior of superabsorbent polymers in cement paste during harden process[J]. Journal of Building Materials, 2022, 25(2): 111-116(in Chinese).
    SHAKER F A, EI-DIEB A S, REDA M M. Durability of styrene-butadiene latex modified concrete[J]. Cement and Concrete Research,1997,27(5):711-720.
    文生, 叶家元, 王妍萍, 等. 掺杂有机大分子水化硅酸钙的孔结构及表面分形特征[J]. 硅酸盐学报, 2006(12):1497-1502. doi: 10.3321/j.issn:0454-5648.2006.12.015

    WEN Sheng, YE Jiayuan, WANG Yanping, et al. Pore structure and surface fractal characteristics of calcium silicatehydrates contained organic macromolecule[J]. Journal of the Chinese Ceramic Society,2006(12):1497-1502(in Chinese). doi: 10.3321/j.issn:0454-5648.2006.12.015
    佘安明, 马坤, 王中平, 等. 低场核磁共振低温 测孔技术表征硬化水泥浆体孔结构[J]. 建筑材料学报, 2021, 24(5): 916-920.

    SHE Anming, MA Kun, WANG Zhongping, et al. Characterization of pore structure in hardened cement paste by low field NMR crvoporometry[J]. Journal of Building Materials, 2021, 24(5): 916-920(in Chinese).
    陈宗丽, 李俊锋, 宋杨. 基于图像观测的硬化水泥浆体孔径分析[J]. 硅酸盐通报, 2020, 39(2):440-446.

    CHEN Zongli, LI Junfeng, SONG Yang. Pore size analysis of hardened cement paste based on image observation[J]. Bulletin of the Chinese Ceramic Society,2020,39(2):440-446(in Chinese).
    FAURE P F, CARE S, MAGAT J, et al. Drying effect on cement paste porosity at early age observed by NMR methods[J]. Construction and Building Materials,2012,29:496-503. doi: 10.1016/j.conbuildmat.2011.07.012
    HERSCHEL W H, BULKLEY R. Konsistenzmessungen von Gummi-Benzoll 8 sungen[J]. Kolloid-Z,1926,39(5):291-300.
    金伟良, 张军, 陈才生, 等. 基于压磁效应的钢筋混凝土疲劳研究新方法[J]. 建筑结构学报, 2016, 37(4):133-142.

    JIN Weiliang, ZHANG Jun, CHEN Caisheng, et al. A new method for fatigue study of reinforced concrete structures based on piezomagnetism[J]. Journal of Building Structures,2016,37(4):133-142(in Chinese).
    金伟良, 项凯潇, 毛江鸿, 等. 基于压磁效应的锈蚀钢筋应力状态检测试验研究[J]. 海洋工程, 2017, 35(6):62-70.

    JIN Weiliang, XIANG Kaixiao, MAO Jianghong, et al. Experimental study on stress detection of corroded steel bars based on piezomagnetic effect[J]. The Ocean Engineering,2017,35(6):62-70(in Chinese).
    李月光, 伊书国, 张霖波, 等. 磁化水水泥混凝土研究现状与发展前景[J]. 材料科学与工程学报, 2019, 37(2):331-338.

    LI Yueguang, YIN Shuguo, ZHANG Linbo, et al. Recent and prospective research on magnetized water-based concrete[J]. Journal of Materials Science and Engineering,2019,37(2):331-338(in Chinese).
    赵华玮, 代学灵, 曾宪桃, 等. 磁化水降低喷射混凝土粉尘含量的试验研究[J]. 采矿与安全工程学报, 2008(3):371-374. doi: 10.3969/j.issn.1673-3363.2008.03.026

    ZHAO Huawei, DAI Xueling, ZENG Xiantao, et al. Experiment study on using magnetized water for decreasing shotcrete dust density[J]. Journal of Mining & Safety Engineering,2008(3):371-374(in Chinese). doi: 10.3969/j.issn.1673-3363.2008.03.026
    殷青英, 翁光远. 智能材料在结构振动控制中的应用研究[J]. 科技导报, 2009, 27(12):93-97. doi: 10.3321/j.issn:1000-7857.2009.12.019

    YIN Qingying, WENG Guangyuan. Applications of intelligent materials in structural vibration[J]. Science & Technology Review,2009,27(12):93-97(in Chinese). doi: 10.3321/j.issn:1000-7857.2009.12.019
    慕儒, 李辉, 王晓伟, 等. 单向分布钢纤维增强水泥基复合材料(II)制备及钢纤维增强作用[J]. 建筑材料学报, 2015, 18(3):388-392.

    MU Ru, LI Hui, WANG Xiaowei, et al. Aligned steel fibre reinforced cement based composites(II): Preparation and reinforcement of aligned steel fibres[J]. Journal of Building Materials,2015,18(3):388-392(in Chinese).
    田稳苓, 马林翔, 张楷婕, 等. 定向钢纤维水泥基复合材料的纤维分布研究[J]. 建筑科学, 2016, 32(3):14-18.

    TIAN Wenlin, MA Linxiang, ZHANG Kaijie, et al. Investigation of fibre distribution on aligned steel fibre cement-based composite materials[J]. Building Science,2016,32(3):14-18(in Chinese).
    慕儒, 赵全明, 田稳苓. 单向分布钢纤维增强水泥浆的制备与性能研究[J]. 河北工业大学学报, 2012, 41(2):101-104. doi: 10.3969/j.issn.1007-2373.2012.02.023

    MU Ru, ZHAO Quanming, TIAN Wenlin. Investigation on the preparation and properties of aligned steel fibre reinforce cement paste[J]. Journal of Hebei University of Technology,2012,41(2):101-104(in Chinese). doi: 10.3969/j.issn.1007-2373.2012.02.023
    宋贺月, 丁一宁. 钢纤维在混凝土基体中空间分布的研究方法评述[J]. 材料科学与工程学报, 2015, 33(5):768-775.

    SONG Heyue, DING Yining. Research methods of spatial distribution of steel fiber in concrete matrix[J]. Journal of Materials Science and Engineering,2015,33(5):768-775(in Chinese).
    TANG H S, KALYON D M. Estimation of the parameters of Herschel-Bulkley fluid under wall sip using a combination of capillary and squeeze flow viscometers[J]. Rheologica Acta,2004,43(15):80-88.
    PAPANASTASIOU T C. Flows of materials with yield[J]. Jourmal of Rheology,1987,31(5):385-404. doi: 10.1122/1.549926
    LI H T, PENG X H, CHEN W G. A micro- to- macroscopic analysis for the yield stress of magnetorheological fluids[C]//International Conference on Heterogeneous Materials Mechanics. Chongqing: Chongqing University Press, 2004: 276-280.
    李海涛, 彭向和, 易成建. 附着颗粒对磁流变液偶极子链力学特性的影响[J]. 重庆大学学报, 2010, 33(7):81-85. doi: 10.11835/j.issn.1000-582X.2010.07.015

    LI Haitao, PENG Xianghe, YI Chengjian. Effect of attached particles on the mechanical properties of dipolar chains in magnetorheological fluids[J]. Journal of Chongqing University,2010,33(7):81-85(in Chinese). doi: 10.11835/j.issn.1000-582X.2010.07.015
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(3)

    Article Metrics

    Article views (958) PDF downloads(26) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint