Volume 40 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
HU Kui, WANG Yingyue, WANG Haoyu, et al. Preparation of high-strength and low-temperature-resistant nanocellulose/polyvinyl alcohol conductive composite hydrogel and its application in flexible sensing[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1060-1070. doi: 10.13801/j.cnki.fhclxb.20220322.003
Citation: HU Kui, WANG Yingyue, WANG Haoyu, et al. Preparation of high-strength and low-temperature-resistant nanocellulose/polyvinyl alcohol conductive composite hydrogel and its application in flexible sensing[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1060-1070. doi: 10.13801/j.cnki.fhclxb.20220322.003

Preparation of high-strength and low-temperature-resistant nanocellulose/polyvinyl alcohol conductive composite hydrogel and its application in flexible sensing

doi: 10.13801/j.cnki.fhclxb.20220322.003
Funds:  National Natural Science Foundation of China (32171733); Natural Science Foundation of Fujian Province (2021J01102)
  • Received Date: 2022-01-21
  • Accepted Date: 2022-03-09
  • Rev Recd Date: 2022-03-02
  • Available Online: 2022-03-23
  • Publish Date: 2023-02-15
  • Nanocellulose is an excellent nano-reinforcing material with large aspect ratio, high elastic modulus and specific surface area, and abundant surface functional groups. Nanocellulose (cellulose nanofibers, CNFs) was first used as the dispersion medium to disperse the MXene nanosheets for preparing the nanocellulose/MXene nanocomposites, and the interaction between nanocellulose and MXene was characterized and analyzed by FTIR and XPS. Then the CNF-MXene/PVA composite hydrogel was prepared by using the CNF-MXene nanocomposites as the reinforcing filler and polyvinyl alcohol (PVA) as the matrix, which was further treated with KOH solution to improve the mechanical properties of the composite hydrogel and endow the composite hydrogel with excellent ionic conductivity. The composite hydrogel exhibites excellent mechanical properties, the tensile strength and elongation at break were 22.5 kPa and 1098.2%, respectively. The hydrogel also possesses high conductivity (2.38 S/m), anti-freezing, and excellent strain/pressure responsive properties. Thanks to the extremely low detection limit (100 mg) and extremely fast response time (225 ms), the hydrogel-based strain/pressure sensor could monitor the pressure changes causes by pulse beating and small vibration of throat. Therefore, the composite hydrogel-based flexible sensor showes great promising applications in the next-generation wearable electronics and human-machine interaction.

     

  • loading
  • [1]
    YING B, WU Q, LI J, et al. An ambient-stable and stretchable ionic skin with multimodal sensation[J]. Materials Horizons,2020,7(2):477-488. doi: 10.1039/C9MH00715F
    [2]
    YANG T, WANG W, ZHANG H, et al. Tactile sensing system based on arrays of graphene woven microfabrics: Electromechanical behavior and electronic skin application[J]. ACS Nano,2015,9(11):10867-10875. doi: 10.1021/acsnano.5b03851
    [3]
    LIU X, TANG C, DU X, et al. A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments[J]. Materials Horizons,2017,4(3):477-486. doi: 10.1039/C7MH00104E
    [4]
    YANG J, CHEN J, SU Y, et al. Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition[J]. Advanced Materials,2015,27(8):1316-1326. doi: 10.1002/adma.201404794
    [5]
    ZHANG M, WANG C, WANG H, et al. Carbonized cotton fabric for high-performance wearable strain sensors[J]. Advanced Functional Materials,2017,27(2):1604795. doi: 10.1002/adfm.201604795
    [6]
    WANG C, LI X, GAO E, et al. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors[J]. Advanced Materials,2016,28(31):6640-6648. doi: 10.1002/adma.201601572
    [7]
    AHMED E M. Hydrogel: Preparation, characterization, and applications: A review[J]. Journal of Advanced Research,2015,6(2):105-121. doi: 10.1016/j.jare.2013.07.006
    [8]
    FU G, CHEN Y, CUI Z, et al. Novel hydrogel-derived bifunctional oxygen electrocatalyst for rechargeable air cathodes[J]. Nano Letters,2016,16(10):6516-6522. doi: 10.1021/acs.nanolett.6b03133
    [9]
    孙富昌, 潘雨辰, 张云飞, 等. PEDOT: PSS/聚(丙烯酰胺-甲基丙烯酸) 导电水凝胶的制备与性能[J]. 复合材料学报, 2022, 39(3):1114-1123.

    SUN Fuchang, PAN Yuchen, ZHANG Yunfei, et al. Preparation and properties of PSS/poly(acrylamide-methacrylic acid) conductive hydrogel[J]. Acta Materiae Compositae Sinica,2022,39(3):1114-1123(in Chinese).
    [10]
    周益名. 纳米纤维素复合凝胶的制备和表征及其物化性能增强的研究[D]. 广州: 华南理工大学, 2014.

    ZHOU Yiming. Preparation, characterization and enhancement of physicochemical properties of nanocellulosic composite gel[D]. Guangzhou: South China University of Technology, 2014(in Chinese).
    [11]
    ZHOU Y, WAN C, YANG Y, et al. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics[J]. Advanced Functional Materials,2019,29(1):1806220. doi: 10.1002/adfm.201806220
    [12]
    薛雅楠, 韩政学, 李爽然, 等. 纳米材料掺杂型聚乙烯醇双交联复合水凝胶的力-化学性质[J]. 材料导报, 2019, 33(10):1745-1751. doi: 10.11896/cldb.18010247

    XUE Yanan, HAN Zhengxue, LI Shuangran, et al. Mechanical and chemical properties of nanomaterial doped polyvinyl alcohol double crosslinked composite hydrogel[J]. Materials Review,2019,33(10):1745-1751(in Chinese). doi: 10.11896/cldb.18010247
    [13]
    徐朝阳, 李健昱, 江向东, 等. MWCNTs增强聚乙二醇-聚乙烯醇复合水凝胶的制备及性能[J]. 复合材料学报, 2017, 34(6):1191-1198.

    XU Zhaoyang, LI Jianyu, JIANG Xiangdong, et al. Preparation and properties of polyethylene-polyvinyl alcohol composite hydrogel reinforced by MWCNTs[J]. Acta Materiae Compositae Sinica,2017,34(6):1191-1198(in Chinese).
    [14]
    SHEN R, XUE S, XU Y, et al. Research progress and development demand of nanocellulose reinforced polymer composites[J]. Polymers, 2020, 12(9): 2113.
    [15]
    HUANG S, ZHAO Z, FENG C, et al. Nanocellulose reinforced P(AAm-co-AAc) hydrogels with improved mecha-nical properties and biocompatibility[J]. Composites Part A: Applied Science and Manufacturing,2018,112:395-404.
    [16]
    HU K, HE P, ZHAO Z, et al. Nature-inspired self-powered cellulose nanofibrils hydrogels with high sensitivity and mechanical adaptability[J]. Carbohydrate Polymers,2021,264:117995.
    [17]
    XIE Y, ZHENG Y, FAN J, et al. Novel electronic-ionic hybrid conductive composites for multifunctional flexible bioelectrode based on in situ synthesis of poly(dopamine) on bacterial cellulose[J]. ACS Applied Materials & Interfaces,2018,10(26):22692-22702. doi: 10.1021/acsami.8b05345
    [18]
    葛文娇. 纳米纤维素增强导电复合水凝胶的构建与性能调控[D]. 广州: 华南理工大学, 2019.

    GE Wenjiao. Construction and property regulation of conductive composite hydrogels enhanced by nanocellulose[D]. Guangzhou: South China University of Technology, 2019(in Chinese).
    [19]
    YUE L, XIE Y, ZHENG Y, et al. Sulfonated bacterial cellulose/polyaniline composite membrane for use as gel polymer electrolyte[J]. Composites Science and Technology,2017,145:122-131.
    [20]
    韩景泉, 王慧祥, 岳一莹, 等. 纤维素纳米纤丝-碳纳米管/聚乙烯醇-硼酸盐复合导电水凝胶[J]. 复合材料学报, 2017, 34(10):2312-2320.

    HAN Jingquan, WANG Huixiang, YUE Yiying, et al. Cellulose nanofiber-carbonbnanotubes/polyvinyl alcohol-borate composite conductive hydrogel[J]. Acta Materiae Compositae Sinica,2017,34(10):2312-2320(in Chinese).
    [21]
    HE P, GUO R, HU K, et al. Tough and super-stretchable conductive double network hydrogels with multiple sensations and moisture-electric generation[J]. Chemical Engineering Journal,2021,414:128726.
    [22]
    韩景泉, 丁琴琴, 鲍雅倩, 等. 纤维素纳米纤丝增强导电水凝胶的合成与表征[J]. 林业工程学报, 2017, 2(1):84-89.

    HAN Jingquan, DING Qinqin, BAO Yaqian, et al. Synthesis and characterization of cellulose nanofiber reinforced conductive hydrogel[J]. Transactions of the Chinese Society of Forestry Engineering,2017,2(1):84-89(in Chinese).
    [23]
    王操宇. 过渡金属碳/氮化物(MXene)复合材料在柔性金属锂电池中的应用[D]. 武汉: 华中农业大学, 2020.

    WANG Caoyu. Application of transition metal carbon/nitride (MXene) composites in flexible metal lithium battery[D]. Wuhan: Huazhong Agricultural University, 2020(in Chinses).
    [24]
    王昕. MXene基超级电容器电极材料的制备与电化学性能研究[D]. 合肥: 中国科学技术大学, 2020.

    WANG Xin. Preparation and electrochemical properties of MXene based supercapacitor electrode materials[D]. Hefei: University of Science and Technology of China, 2020(in Chinese).
    [25]
    ZHOU B, ZHANG Z, LI Y, et al. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers[J]. ACS Applied Materials & Interfaces,2020,12(4):4895-4905. doi: 10.1021/acsami.9b19768
    [26]
    XIN W, XI G Q, CAO W T, et al. Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding[J]. RSC Advances,2019,9(51):29636-29644. doi: 10.1039/C9RA06399D
    [27]
    卢麒麟. 基于纳米纤维素的超分子复合材料与杂化材料的研究[D]. 福州: 福建农林大学, 2016.

    LU Qilin. Study on supramolecular composites and hybrid materials based on nanocelluloses[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016(in Chinese).
    [28]
    HUANG S, HOU L, LI T, et al. Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries[J]. Advanced Materials,2022,34(14):2110140. doi: 10.1002/adma.202110140
    [29]
    YANG Y, YANG Y, CAO Y, et al. Anti-freezing, resilient and tough hydrogels for sensitive and large-range strain and pressure sensors[J]. Chemical Engineering Journal,2021,403:126431.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (1445) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return