Citation: | CHEN Xiaojie, MA Ge, MENG Huidi, CUI Zhe, FU Peng, ZHAO Wei, PANG Xinchang, ZHAO Qingxiang, LIU Minying, ZHANG Xiaomeng. Preparation and properties of hexagonal boron nitride/semi-aromatic polyamide 12T composites with high-temperature resistance and high thermal conductivity prepared by mixed solvent dispersion method[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 825-835. doi: 10.13801/j.cnki.fhclxb.20220321.003 |
[1] |
LIU H B, FU R L, SU X Q, et al. Electrical insulating MXene/PDMS/BN composite with enhanced thermal conductivity for electromagnetic shielding application[J]. Composites Communications,2021,23:100593. doi: 10.1016/j.coco.2020.100593
|
[2] |
HAN Y X, SHI X T, YANG X T, et al. Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers[J]. Composites Science and Technology,2020,187:107944. doi: 10.1016/j.compscitech.2019.107944
|
[3] |
WAN Y J, LI G, YAO Y M, et al. Recent advances in polymer-based electronic packaging materials[J]. Composites Communications,2020,19:154-167. doi: 10.1016/j.coco.2020.03.011
|
[4] |
别正业. 无铅焊接技术的现状与应用[J]. 电机电器技术, 2002(6):12-14.
BIE Zhengye. The present situations and applications of lead-free soldering technology[J]. Electric Machine and Apparatus Technology,2002(6):12-14(in Chinese).
|
[5] |
陈仕国, 戈早川, 杨海朋, 等. 聚合物基电子封装复合材料研究进展[J]. 宇航材料工艺, 2007(5):4-7. doi: 10.3969/j.issn.1007-2330.2007.05.002
CHEN Shiguo, GE Zaochuan, YANG Haipeng, et al. Progress in polymer composite for electroinc packaging[J]. Aerospace Materials and Technology,2007(5):4-7(in Chinese). doi: 10.3969/j.issn.1007-2330.2007.05.002
|
[6] |
JIN F L, LI X, PARK S. Synthesis and application of epoxy resins: A review[J]. Journal of Industrial and Engineering Chemistry,2015,29:1-11. doi: 10.1016/j.jiec.2015.03.026
|
[7] |
OU X H, CHEN S S, LU X M, et al. Enhancement of thermal conductivity and dimensional stability of polyimide/boron nitride films through mechanochemistry[J]. Composites Communications,2021,23:100549. doi: 10.1016/j.coco.2020.100549
|
[8] |
GWON T M, KIM C, SHIN S, et al. Liquid crystal polymer (LCP)-based neural prosthetic devices[J]. Biomedical Engineering Letters,2016,6(3):148-163. doi: 10.1007/s13534-016-0229-z
|
[9] |
ZHANG C H. Progress in semicrystalline heat-resistant polyamides[J]. E-Polymers,2018,18(5):373-408. doi: 10.1515/epoly-2018-0094
|
[10] |
LIU B W, LONG J W, CHEN L, et al. Semi-aromatic polyamides containing fluorenyl pendent toward excellent thermal stability, mechanical properties and dielectric performance[J]. Polymer,2021,224:123757. doi: 10.1016/j.polymer.2021.123757
|
[11] |
张美林, 岳文斌, 郎绪志, 等. 半芳香族聚酰胺特种工程塑料的发展与应用现状[J]. 中国塑料, 2020, 34(5):115-122.
ZHANG Meilin, YUE Wenbin, LANG Xuzhi, et al. Development and application of special engineering plastics: Semi-aromatic polyamide[J]. China Plastics,2020,34(5):115-122(in Chinese).
|
[12] |
张传辉, 麦堪成, 曹民, 等. 高温尼龙研究进展[J]. 工程塑料应用, 2012, 40(11):95-100. doi: 10.3969/j.issn.1001-3539.2012.11.023
ZHANG Chuanhui, MAI Kancheng, CAO Min, et al. Research progress in heat-resistant nylon[J]. Engineering Plastics Application,2012,40(11):95-100(in Chinese). doi: 10.3969/j.issn.1001-3539.2012.11.023
|
[13] |
PAPASPYRIDES C D, PORFYRIS A D, RULKENS R, et al. The effect of diamine length on the direct solid state polycondensation of semi-aromatic nylon salts[J]. Journal of Polymer Science Part A-Polymer Chemistry,2016,54(16):2493-2506. doi: 10.1002/pola.28126
|
[14] |
LIU M Y, LI K F, YANG S H, et al. Synthesis and thermal decomposition of poly(dodecamethylene terephthalamide)[J]. Journal of Applied Polymer Science,2011,122(5):3369-3376. doi: 10.1002/app.34416
|
[15] |
CAO J P, ZHAO J, ZHAO X D, et al. High thermal conducti-vity and high electrical resistivity of poly(vinylidene fluoride)/polystyrene blends by controlling the localization of hybrid fillers[J]. Composites Science and Technology,2013,89:142-148. doi: 10.1016/j.compscitech.2013.09.024
|
[16] |
CAO B Y, LI Y W, KONG J, et al. High thermal conductivity of polyethylene nanowire arrays fabricated by an improved nanoporous template wetting technique[J]. Polymer,2011,52(8):1711-1715. doi: 10.1016/j.polymer.2011.02.019
|
[17] |
HU J T, HUANG Y, YAO Y M, et al. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN[J]. ACS Applied Materials & Interfaces,2017,9(15):13544-13553.
|
[18] |
PAN G R, YAO Y M, ZENG X L, et al. Learning from natural nacre: Constructing layered polymer composites with high thermal conductivity[J]. ACS Applied Materials & Interfaces,2017,9(38):33001-33010.
|
[19] |
REN Y J, REN L C, LI J X, et al. Enhanced thermal conducti-vity in polyamide 6 composites based on the compatibilization effect of polyether-grafted graphene[J]. Composites Science and Technology,2020,199:108340. doi: 10.1016/j.compscitech.2020.108340
|
[20] |
GUO H C, ZHAO H Y, NIU H Y, et al. Highly thermally conductive 3D printed graphene filled polymer composites for scalable thermal management applications[J]. ACS Nano,2021,15(4):6917-6928. doi: 10.1021/acsnano.0c10768
|
[21] |
刘民英, 赵清香, 付鹏, 等. 一种半芳香尼龙的制备方法: 中国专利, CN101768266A[P]. 2010-07-07.
LIU Minying, ZHAO Qingxiang, FU Peng, et al. A preparation method of semi-aromatic nylon: Chinese patent, CN101768266A[P]. 2010-07-07(in Chinese).
|
[22] |
ZHANG J, WANG X N, YU C P, et al. A facile method to prepare flexible boron nitride/poly(vinyl alcohol) composites with enhanced thermal conductivity[J]. Composites Science and Technology,2017,149:41-47. doi: 10.1016/j.compscitech.2017.06.008
|
[23] |
WANG X, WU P. Fluorinated carbon nanotube/nanofibrillated cellulose composite film with enhanced toughness, superior thermal conductivity, and electrical insulation[J]. ACS Applied Materials & Interfaces,2018,10(40):34311-34321.
|
[24] |
国家质量技术监督局. 热塑性塑料维卡软化温度(VST)的测定: GB/T 1633—2000[S]. 北京: 中国标准出版社, 2000.
State Bureau of Quality and Technical Supervision. Plastics-Thermoplasitic materials-Determination of vicat softening temperature (VST): GB/T 1633—2000[S]. Beijing: Standards Press of China, 2000(in Chinese).
|
[25] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 塑料 拉伸性能的测定 第2部分: 模塑和挤塑塑料的试验条件: GB/T 1040.2—2006[S]. 北京: 中国标准出版社, 2006.
General Administration of Quality Supervision, Inspection and Quarantine, Standardization Administration of China. Plastic-Deformation of tensile properties-Determination for moulding or extrusion plastic: GB/T 1040.2—2006[S]. Beijing: Standards Press of China, 2006(in Chinese).
|
[26] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 塑料 弯曲性能的测定: GB/T 9341—2008[S]. 北京: 中国标准出版社, 2008.
General Administration of Quality Supervision, Inspection and Quarantine, Standardization Administration of China. Plasitc-Deformation of flexural properties: GB/T 9341—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
|
[27] |
ZHANG X M, ZHANG J J, XIA L C, et al. Simple and consecutive melt extrusion method to fabricate thermally conductive composites with highly oriented boron nitrides[J]. ACS Applied Materials & Interfaces,2017,9(27):22977-22984.
|
[28] |
YUAN C, DUAN B, LI L, et al. Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets[J]. ACS Applied Materials & Interfaces,2015,7(23):13000-13006.
|
[29] |
LIN Z Y, LIU Y, RAGHAVAN S, et al. Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: Toward high performance anisotropic polymer composites for electronic encapsulation[J]. ACS Applied Materials & Interfaces,2013,5(15):7633-7640.
|
[30] |
SONG N, JIAO D J, DING P, et al. Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets[J]. Journal of Materials Chemistry C,2016,4(2):305-314. doi: 10.1039/C5TC02194D
|
[31] |
LEUNG S N, KHAN O M, SHI H, et al. Study on liquid crystal polymer-hexagonal boron nitride composites for hybrid heat sinks[J]. Industrial & Engineering Chemistry Research,2013,52(24):8332-8339.
|
[32] |
GHOSH B, XU F, HOU X H. Thermally conductive poly(ether ether ketone)/boron nitride composites with low coefficient of thermal expansion[J]. Journal of Materials Science,2021,56(17):10326-10337. doi: 10.1007/s10853-021-05923-0
|
[33] |
LIU X, GAO Y W, SHANG Y S, et al. Non-covalent modification of boron nitride nanoparticle-reinforced PEEK composite: Thermally conductive, interfacial, and mechanical properties[J]. Polymer,2020,203:122763. doi: 10.1016/j.polymer.2020.122763
|
[34] |
BOZKURT Y E, YILDIZ A, TÜRKARSLAN Ö, et al. Thermally conductive h-BN reinforced PEI composites: The role of processing conditions on dispersion states[J]. Materials Today Communications,2021,29:102854. doi: 10.1016/j.mtcomm.2021.102854
|
[35] |
LEE H L, KWON O H, HA S M, et al. Thermal conductivity improvement of surface-enhanced polyetherimide (PEI) composites using polyimide-coated h-BN particles[J]. Physical Chemistry Chemical Physics,2014,16(37):20041-20046. doi: 10.1039/C4CP02730B
|
[36] |
GU J W, GUO Y Q, YANG X T, et al. Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers[J]. Composites Part A: Applied Science and Manufacturing,2017,95:267-273. doi: 10.1016/j.compositesa.2017.01.019
|
[37] |
KIM K, LEE J, RYU S, et al. Laser direct structuring and electroless plating applicable super-engineering plastic PPS based thermal conductive composite with particle surface modification[J]. RSC Advances,2018,8(18):9933-9940. doi: 10.1039/C8RA00967H
|
[38] |
YANG X T, TANG L, GUO Y Q, et al. Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-poss functionalized n-BN fillers[J]. Composites Part A: Applied Science and Manufacturing,2017,101:237-242. doi: 10.1016/j.compositesa.2017.06.005
|
[39] |
ZHANG X W, ZHANG B, SUN M M, et al. Preparation and thermal conductivity properties of high-temperature resistance polyimide composite films based on silver nanowires-decorated multi-walled carbon nanotubes[J]. Journal of Materials Science-Materials in Electronics, 2022, 33(3): 1577-1588.
|
[40] |
YANG Y S, LI D X, SI G J, et al. Improved thermal and mechanical properties of carbon fiber filled polyamide 46 composites[J]. Journal of Polymer Engineering,2017,37(4):345-353. doi: 10.1515/polyeng-2016-0092
|
[41] |
张娜娜. 短切玻纤增强尼龙12T复合材料的制备和性能研究[D]. 郑州: 郑州大学, 2018.
ZHANG Nana. Preparation and properties of short glass fiber reinforced PA12T composites[D]. Zhengzhou: Zhengzhou University, 2018(in Chinese).
|
[42] |
MENG H, SUI G X, XIE G Y, et al. Friction and wear behavior of carbon nanotubes reinforced polyamide 6 compo-sites under dry sliding and water lubricated condition[J]. Composites Science and Technology,2009,69(5):606-611. doi: 10.1016/j.compscitech.2008.12.004
|
[43] |
CHATTERJEE S, NUESCH F A, CHU B T. Comparing carbon nanotubes and graphene nanoplatelets as reinforcements in polyamide 12 composites[J]. Nanotechnology,2011,22(27):275714. doi: 10.1088/0957-4484/22/27/275714
|
[44] |
HOU J, LI G H, YANG N, et al. Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity[J]. RSC Advances,2014,4(83):44282-44290. doi: 10.1039/C4RA07394K
|
[45] |
DASTAKEER S, SAMINATHAN P, VENKATESAN S, et al. Studies on thermal degradation kinetics and dielectric properties of polyether imide foam/nanosilica-based nanocomposites[J]. Plastics Rubber and Composites,2019,48(8):356-363. doi: 10.1080/14658011.2019.1630200
|
[46] |
WU K, LEI C X, YANG W X, et al. Surface modification of boron nitride by reduced graphene oxide for preparation of dielectric material with enhanced dielectric constant and well-suppressed dielectric loss[J]. Composites Science and Technology,2016,134:191-200. doi: 10.1016/j.compscitech.2016.08.015
|
[47] |
LATURIA A, VAN DE PUT M L, VANDENBERGHE W G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: From monolayer to bulk[J]. NPJ 2D Materials and Applications,2018,2(1):6. doi: 10.1038/s41699-018-0050-x
|
[48] |
蔡德龙, 陈斐, 何凤梅, 等. 高温透波陶瓷材料研究进展[J]. 现代技术陶瓷, 2019, 40(Z1):4-120.
CAI Delong, CHEN Fei, HE Fengmei, et al. Recent progress and prospestion on high-temperature wave-transparent ceramic materials[J]. Advanced Ceramics,2019,40(Z1):4-120(in Chinese).
|