Volume 40 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
LEI Yongpeng, KANG Zhenhang, LIU Zhu, et al. Numerical study on the effect of void content on hygrothermal performances of carbon fiber reinforced polyamide 6 composites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1154-1166. doi: 10.13801/j.cnki.fhclxb.20220318.001
Citation: LEI Yongpeng, KANG Zhenhang, LIU Zhu, et al. Numerical study on the effect of void content on hygrothermal performances of carbon fiber reinforced polyamide 6 composites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1154-1166. doi: 10.13801/j.cnki.fhclxb.20220318.001

Numerical study on the effect of void content on hygrothermal performances of carbon fiber reinforced polyamide 6 composites

doi: 10.13801/j.cnki.fhclxb.20220318.001
  • Received Date: 2022-01-19
  • Accepted Date: 2022-03-07
  • Rev Recd Date: 2022-02-18
  • Available Online: 2022-03-20
  • Publish Date: 2023-02-15
  • Voids are comment defects generated during the manufacturing process and highly sensitive to moisture in the hygrothermal environment. The presence of voids will change the stress field and moisture field, which has deleterious effects on the mechanical performances. The mechanical properties of carbon fiber reinforced polyamide 6 (CF/PA6) composites after hygrothermal aging under different temperature immersion environment were tested to study the effects of temperature and water absorbed content on the mechanical properties. The correlation function between water content and mechanical parameters was established. Based on the random sequential adsorption algorithm (RSA), the representative volume element (RVE) model with random distribution of fibers, interfaces and voids was established. The quantitative effects of voids content on strength and modulus under the loading of transverse tension, compression and shear were investigated, by introducing a degradation factor dependent on water content into the constitutive model, and the failure mechanisms before and after hygrothermal aging were revealed. Conclusively, before hygrothermal aging, voids induce the decrease of mechanical properties due to stress concentration, and every 1% increase in the voids content results in a 6.4% decrease of transverse tensile strength. However, matrix degradation due to the absorbed water content after hygrothermal aging is the dominant factor, and the corresponding rate is 3.86%.

     

  • loading
  • [1]
    GRUNENFELDER L K, NUTT S R. Void formation in compo-site prepregs–Effect of dissolved moisture[J]. Composites Science and Technology,2010,70(16):2304-2309. doi: 10.1016/j.compscitech.2010.09.009
    [2]
    MEHDIKHANI M, STRAUMIT I, GORBATIKH L, et al. Detailed characterization of voids in multidirectional carbon fiber/epoxy composite laminates using X-ray micro-computed tomography[J]. Composites Part A: Applied Science and Manufacturing,2019,125:105532. doi: 10.1016/j.compositesa.2019.105532
    [3]
    LUO L, ZHANG B, LEI Y, et al. Identification of voids and interlaminar shear strengths of polymer-matrix compo-sites by optical microscopy experiment and deep learning methodology[J]. Polymers for Advanced Technologies,2021,32(4):1853-1865. doi: 10.1002/pat.5226
    [4]
    COSTA M L, DE ALMEIDA S F M, REZENDE M C. The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates[J]. Composites Science and Technology,2001,61(14):2101-2108. doi: 10.1016/S0266-3538(01)00157-9
    [5]
    LITTLE J E, YUAN X, JONES M I. Characterisation of voids in fibre reinforced composite materials[J]. NDT & E International,2012,46:122-127.
    [6]
    MANTA A, GRESIL M, SOUTIS C. Infrared thermography for void mapping of a graphene/epoxy composite and its full-field thermal simulation[J]. Fatigue & Fracture of Engineering Materials & Structures,2019,42(7):1441-1453.
    [7]
    TRETIAK I, SMITH R A. A parametric study of segmentation thresholds for X-ray CT porosity characterisation in composite materials[J]. Composites Part A: Applied Science and Manufacturing,2019,123:10-24. doi: 10.1016/j.compositesa.2019.04.029
    [8]
    李波, 万小朋, 赵美英. 孔隙率对复合材料单向板横向力学性能的影响[J]. 玻璃钢/复合材料, 2017(6):33-38.

    LI Bo, WAN Xiaopeng, ZHAO Meiying. The influence of void contents on transverse mechanical properties of unidirectional composites[J]. Fiber Reinforced Plastics/Composites,2017(6):33-38(in Chinese).
    [9]
    梁向雨, 林莉, 陈军, 等. 孔隙尺寸离散度大的碳纤维增强复合材料随机孔隙建模方法研究[J]. 航空材料学报, 2013, 33(3):81-85.

    LIANG Xiangyu, LIN Li, CHEN Jun, et al. Random void modeling for carbon fibre reinforced composite with highly dispersed void size[J]. Journal of Aeronautical Materials,2013,33(3):81-85(in Chinese).
    [10]
    HUANG H, TALREJA R. Effects of void geometry on elastic properties of unidirectional fiber reinforced composites[J]. Composites Science and Technology,2005,65(13):1964-1981. doi: 10.1016/j.compscitech.2005.02.019
    [11]
    NIKOPOUR H. A virtual frame work for predication of effect of voids on transverse elasticity of a unidirectionally reinforced composite[J]. Computational Materials Science,2013,79:25-30. doi: 10.1016/j.commatsci.2013.05.049
    [12]
    ASHOURI VAJARI D, GONZÁLEZ C, LLORCA J, et al. A numerical study of the influence of microvoids in the transverse mechanical response of unidirectional composites[J]. Composites Science and Technology,2014,97:46-54. doi: 10.1016/j.compscitech.2014.04.004
    [13]
    DONG C. Effects of process-induced voids on the properties of fibre reinforced composites[J]. Journal of Materials Science & Technology,2016,32(7):597-604.
    [14]
    WANG M, ZHANG P, FEI Q, et al. Computational evaluation of the effects of void on the transverse tensile strengths of unidirectional composites considering thermal residual stress[J]. Composite Structures,2019,227:111287. doi: 10.1016/j.compstruct.2019.111287
    [15]
    MEHDIKHANI M, PETROV N A, STRAUMIT I, et al. The effect of voids on matrix cracking in composite laminates as revealed by combined computations at the micro- and meso-scales[J]. Composites Part A: Applied Science and Manufacturing,2019,117:180-192. doi: 10.1016/j.compositesa.2018.11.009
    [16]
    HYDE A, HE J, CUI X, et al. Effects of microvoids on strength of unidirectional fiber-reinforced composite materials[J]. Composites Part B: Engineering,2020,187:107844. doi: 10.1016/j.compositesb.2020.107844
    [17]
    GUERIBIZ D, RAHMANI M, JACQUEMIN F, et al. Homogenization of moisture diffusing behavior of composite materials with impermeable or permeable fibers—Application to porous composite materials[J]. Journal of Compo-site Materials,2009,43(12):1391-1408. doi: 10.1177/0021998308104229
    [18]
    BOURENNANE H, GUERIBIZ D, FRÉOUR S, et al. Modeling the effect of damage on diffusive behavior in a polymeric matrix composite material[J]. Journal of Reinforced Plastics and Composites,2019,38(15):717-733. doi: 10.1177/0731684419845479
    [19]
    LEI Y, ZHANG J, ZHANG T, et al. Water diffusion in carbon fiber reinforced polyamide 6 composites: Experimental, theoretical, and numerical approaches[J]. Journal of Reinforced Plastics and Composites,2019,38(12):578-587. doi: 10.1177/0731684419835034
    [20]
    SANG L, WANG C, WANG Y, et al. Effects of hydrothermal aging on moisture absorption and property prediction of short carbon fiber reinforced polyamide 6 composites[J]. Composites Part B: Engineering,2018,153:306-314. doi: 10.1016/j.compositesb.2018.08.138
    [21]
    SANG L, WANG Y, WANG C, et al. Moisture diffusion and damage characteristics of carbon fabric reinforced polyamide 6 laminates under hydrothermal aging[J]. Composites Part A: Applied Science and Manufacturing,2019,123:242-252. doi: 10.1016/j.compositesa.2019.05.023
    [22]
    American Society of Testing Materials. Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials: ASTM D5229M-14[S]. West Conshohocken: American Standards Press, 2014.
    [23]
    American Society of Testing Materials. Standard test method for tensile properties of plastics: ASTM D638-14[S]. West Conshohocken: American Standards Press, 2014.
    [24]
    American Society of Testing Materials. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039-14[S]. West Conshohocken: American Standards Press, 2014.
    [25]
    ALTENBACH H, BOLCHOUN A, KOLUPAEV V A. Phenomenological yield and failure criteria[M]. Springer: Plasticity of Pressure-sensitive Materials, 2014: 49-152.
    [26]
    BRÜNIG M, CHYRA O, ALBRECHT D, et al. A ductile damage criterion at various stress triaxialities[J]. International Journal of Plasticity,2008,24(10):1731-1755. doi: 10.1016/j.ijplas.2007.12.001
    [27]
    PARÍS F, CORREA E, CAÑAS J. Micromechanical view of failure of the matrix in fibrous composite materials[J]. Composites Science and Technology,2003,63(7):1041-1052. doi: 10.1016/S0266-3538(03)00017-4
    [28]
    GONZÁLEZ C, LLORCA J. Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: Microscopic mechanisms and modeling[J]. Composites Science and Technology,2007,67(13):2795-2806. doi: 10.1016/j.compscitech.2007.02.001
    [29]
    JIA L, YU L, ZHANG K, et al. Combined modelling and experimental studies of failure in thick laminates under out-of-plane shear[J]. Composites Part B: Engineering,2016,105:8-22. doi: 10.1016/j.compositesb.2016.08.017
    [30]
    HUANG Z M. Micromechanical failure analysis of unidirectional composites[M]. England: Failure Analysis, IntechOpen, 2018: 43.
    [31]
    AFFDL J C H, KARDOS J L. The Halpin-Tsai equations: A review[J]. Polymer Engineering and Science,1976,16(5):344-352. doi: 10.1002/pen.760160512
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views (1095) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return