Citation: | LEI Yongpeng, KANG Zhenhang, LIU Zhu, SONG Quanwei, ZHANG Jifeng. Numerical study on the effect of void content on hygrothermal performances of carbon fiber reinforced polyamide 6 composites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1154-1166. doi: 10.13801/j.cnki.fhclxb.20220318.001 |
[1] |
GRUNENFELDER L K, NUTT S R. Void formation in compo-site prepregs–Effect of dissolved moisture[J]. Composites Science and Technology,2010,70(16):2304-2309. doi: 10.1016/j.compscitech.2010.09.009
|
[2] |
MEHDIKHANI M, STRAUMIT I, GORBATIKH L, et al. Detailed characterization of voids in multidirectional carbon fiber/epoxy composite laminates using X-ray micro-computed tomography[J]. Composites Part A: Applied Science and Manufacturing,2019,125:105532. doi: 10.1016/j.compositesa.2019.105532
|
[3] |
LUO L, ZHANG B, LEI Y, et al. Identification of voids and interlaminar shear strengths of polymer-matrix compo-sites by optical microscopy experiment and deep learning methodology[J]. Polymers for Advanced Technologies,2021,32(4):1853-1865. doi: 10.1002/pat.5226
|
[4] |
COSTA M L, DE ALMEIDA S F M, REZENDE M C. The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates[J]. Composites Science and Technology,2001,61(14):2101-2108. doi: 10.1016/S0266-3538(01)00157-9
|
[5] |
LITTLE J E, YUAN X, JONES M I. Characterisation of voids in fibre reinforced composite materials[J]. NDT & E International,2012,46:122-127.
|
[6] |
MANTA A, GRESIL M, SOUTIS C. Infrared thermography for void mapping of a graphene/epoxy composite and its full-field thermal simulation[J]. Fatigue & Fracture of Engineering Materials & Structures,2019,42(7):1441-1453.
|
[7] |
TRETIAK I, SMITH R A. A parametric study of segmentation thresholds for X-ray CT porosity characterisation in composite materials[J]. Composites Part A: Applied Science and Manufacturing,2019,123:10-24. doi: 10.1016/j.compositesa.2019.04.029
|
[8] |
李波, 万小朋, 赵美英. 孔隙率对复合材料单向板横向力学性能的影响[J]. 玻璃钢/复合材料, 2017(6):33-38.
LI Bo, WAN Xiaopeng, ZHAO Meiying. The influence of void contents on transverse mechanical properties of unidirectional composites[J]. Fiber Reinforced Plastics/Composites,2017(6):33-38(in Chinese).
|
[9] |
梁向雨, 林莉, 陈军, 等. 孔隙尺寸离散度大的碳纤维增强复合材料随机孔隙建模方法研究[J]. 航空材料学报, 2013, 33(3):81-85.
LIANG Xiangyu, LIN Li, CHEN Jun, et al. Random void modeling for carbon fibre reinforced composite with highly dispersed void size[J]. Journal of Aeronautical Materials,2013,33(3):81-85(in Chinese).
|
[10] |
HUANG H, TALREJA R. Effects of void geometry on elastic properties of unidirectional fiber reinforced composites[J]. Composites Science and Technology,2005,65(13):1964-1981. doi: 10.1016/j.compscitech.2005.02.019
|
[11] |
NIKOPOUR H. A virtual frame work for predication of effect of voids on transverse elasticity of a unidirectionally reinforced composite[J]. Computational Materials Science,2013,79:25-30. doi: 10.1016/j.commatsci.2013.05.049
|
[12] |
ASHOURI VAJARI D, GONZÁLEZ C, LLORCA J, et al. A numerical study of the influence of microvoids in the transverse mechanical response of unidirectional composites[J]. Composites Science and Technology,2014,97:46-54. doi: 10.1016/j.compscitech.2014.04.004
|
[13] |
DONG C. Effects of process-induced voids on the properties of fibre reinforced composites[J]. Journal of Materials Science & Technology,2016,32(7):597-604.
|
[14] |
WANG M, ZHANG P, FEI Q, et al. Computational evaluation of the effects of void on the transverse tensile strengths of unidirectional composites considering thermal residual stress[J]. Composite Structures,2019,227:111287. doi: 10.1016/j.compstruct.2019.111287
|
[15] |
MEHDIKHANI M, PETROV N A, STRAUMIT I, et al. The effect of voids on matrix cracking in composite laminates as revealed by combined computations at the micro- and meso-scales[J]. Composites Part A: Applied Science and Manufacturing,2019,117:180-192. doi: 10.1016/j.compositesa.2018.11.009
|
[16] |
HYDE A, HE J, CUI X, et al. Effects of microvoids on strength of unidirectional fiber-reinforced composite materials[J]. Composites Part B: Engineering,2020,187:107844. doi: 10.1016/j.compositesb.2020.107844
|
[17] |
GUERIBIZ D, RAHMANI M, JACQUEMIN F, et al. Homogenization of moisture diffusing behavior of composite materials with impermeable or permeable fibers—Application to porous composite materials[J]. Journal of Compo-site Materials,2009,43(12):1391-1408. doi: 10.1177/0021998308104229
|
[18] |
BOURENNANE H, GUERIBIZ D, FRÉOUR S, et al. Modeling the effect of damage on diffusive behavior in a polymeric matrix composite material[J]. Journal of Reinforced Plastics and Composites,2019,38(15):717-733. doi: 10.1177/0731684419845479
|
[19] |
LEI Y, ZHANG J, ZHANG T, et al. Water diffusion in carbon fiber reinforced polyamide 6 composites: Experimental, theoretical, and numerical approaches[J]. Journal of Reinforced Plastics and Composites,2019,38(12):578-587. doi: 10.1177/0731684419835034
|
[20] |
SANG L, WANG C, WANG Y, et al. Effects of hydrothermal aging on moisture absorption and property prediction of short carbon fiber reinforced polyamide 6 composites[J]. Composites Part B: Engineering,2018,153:306-314. doi: 10.1016/j.compositesb.2018.08.138
|
[21] |
SANG L, WANG Y, WANG C, et al. Moisture diffusion and damage characteristics of carbon fabric reinforced polyamide 6 laminates under hydrothermal aging[J]. Composites Part A: Applied Science and Manufacturing,2019,123:242-252. doi: 10.1016/j.compositesa.2019.05.023
|
[22] |
American Society of Testing Materials. Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials: ASTM D5229M-14[S]. West Conshohocken: American Standards Press, 2014.
|
[23] |
American Society of Testing Materials. Standard test method for tensile properties of plastics: ASTM D638-14[S]. West Conshohocken: American Standards Press, 2014.
|
[24] |
American Society of Testing Materials. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039-14[S]. West Conshohocken: American Standards Press, 2014.
|
[25] |
ALTENBACH H, BOLCHOUN A, KOLUPAEV V A. Phenomenological yield and failure criteria[M]. Springer: Plasticity of Pressure-sensitive Materials, 2014: 49-152.
|
[26] |
BRÜNIG M, CHYRA O, ALBRECHT D, et al. A ductile damage criterion at various stress triaxialities[J]. International Journal of Plasticity,2008,24(10):1731-1755. doi: 10.1016/j.ijplas.2007.12.001
|
[27] |
PARÍS F, CORREA E, CAÑAS J. Micromechanical view of failure of the matrix in fibrous composite materials[J]. Composites Science and Technology,2003,63(7):1041-1052. doi: 10.1016/S0266-3538(03)00017-4
|
[28] |
GONZÁLEZ C, LLORCA J. Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: Microscopic mechanisms and modeling[J]. Composites Science and Technology,2007,67(13):2795-2806. doi: 10.1016/j.compscitech.2007.02.001
|
[29] |
JIA L, YU L, ZHANG K, et al. Combined modelling and experimental studies of failure in thick laminates under out-of-plane shear[J]. Composites Part B: Engineering,2016,105:8-22. doi: 10.1016/j.compositesb.2016.08.017
|
[30] |
HUANG Z M. Micromechanical failure analysis of unidirectional composites[M]. England: Failure Analysis, IntechOpen, 2018: 43.
|
[31] |
AFFDL J C H, KARDOS J L. The Halpin-Tsai equations: A review[J]. Polymer Engineering and Science,1976,16(5):344-352. doi: 10.1002/pen.760160512
|