Citation: | CAO Zhongliang, ZHU Hao, DONG Mingjun, HE Qing. Structural design and low speed impact performance of cross recessed grid sandwich[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1190-1207. doi: 10.13801/j.cnki.fhclxb.20220311.001 |
[1] |
WEI X Y, LI D F, XIONG J. Fabrication and mechanical behaviors of an all-composite sandwich structure with a hexagon honeycomb core based on the tailor-folding approach[J]. Composites Science and Technology,2019,184:878-894.
|
[2] |
DU Y T, SONG C P, XIONG J, et al. Fabrication and mecha-nical behaviors of carbon fiber reinforced composite foldcore based on curved-crease origami[J]. Composites Science and Technology,2019,174:94-105.
|
[3] |
SUN F F, LAI C L, FAN H L. Failure mode maps for composite anisogrid lattice sandwich cylinders under fundamental loads[J]. Composites Science and Technology,2017,152:149-158.
|
[4] |
SUN F F, WANG P, LI W X, et al. Effects of circular cutouts on mechanical behaviors of carbon fiber reinforced lattice-core sandwich cylinder[J]. Composites Part A: Applied Science and Manufacturing,2017,100:313-323.
|
[5] |
UMER R, BARSOUM Z, JISHI H Z, et al. Analysis of the compression behaviour of different composite lattice designs[J]. Journal of Composite Materials,2018,52(6):715-729. doi: 10.1177/0021998317714531
|
[6] |
胡记强, 王兵, 张涵其, 等. 热塑性复合材料构件的制备及其在航空航天领域的应用[J]. 宇航总体技术, 2020, 4(4):61-70.
HU Jiqiang, WANG Bing, ZHANG Hanqi, et al. Preparation of thermoplastic composite components and their application in aerospace field[J]. General Aerospace Technology,2020,4(4):61-70(in Chinese).
|
[7] |
GIUSTO G, TOTARO G, SPENA P, et al. Composite grid structure technology for space applications[J]. Materials Today: Proceedings,2021,34:332-340. doi: 10.1016/j.matpr.2020.05.754
|
[8] |
熊健, 李志彬, 刘惠彬, 等. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报, 2021, 38(6):1629-1650.
XIONG Jian, LI Zhibin, LIU Huibin, et al. Advances in aerospace lightweight composite shell structure[J]. Acta Materiae Compositae Sinica,2021,38(6):1629-1650(in Chinese).
|
[9] |
王晓旭, 张典堂, 钱坤, 等. 深海纤维增强树脂复合材料圆柱耐压壳力学性能的研究进展[J]. 复合材料学报, 2020, 37(1): 16-26.
WANG Xiaoxu, ZHANG Diantang, QIAN Kun, et al. Research progress on mechanical properties of deep-sea fiber reinforced resin composite cylindrical pressure shells[J]. Acta Materiae Compositae Sinica, 2020, 37(1): 16-26(in Chinese).
|
[10] |
MA Q, REJAB M R M, SIREGAR J P, et al. A review of the recent trends on core structures and impact response of sandwich panels[J]. Journal of Composite Materials,2021,55(18):2513-2555. doi: 10.1177/0021998321990734
|
[11] |
AMIR E, HAMID D. Influence of employing laminated isogrid configuration on mechanical behavior of grid structures[J]. Journal of Reinforced Plastics and Composites,2019,38(16):518-601.
|
[12] |
DAVOUD S G, GHOLAMHOSSEIN R, GHOLAMHOSSEIN L, et al. Buckling prediction of composite lattice sandwich cylinders (CLSC) through the vibration correlation technique (VCT): Numerical assessment with experimental and analytical verification[J]. Composites Part B: Engineering,2020,199:724-741.
|
[13] |
LIU Z B, CHEN H T, XING S Q. Mechanical performances of metal-polymer sandwich structures with 3D-printed lattice cores subjected to bending load[J]. Archives of Civil and Mechanical Engineering,2020,20(3):649-667.
|
[14] |
MENG L, LAN X, ZHAO J, et al. Failure analysis of bio-inspired corrugated sandwich structures fabricated by laser powder bed fusion under three-point bending[J]. Composite Structures,2021,263(1):113724.
|
[15] |
HU K, LIN K, GU D, et al. Mechanical properties and deformation behavior under compressive loading of selective laser melting processed bio-inspired sandwich structures[J]. Materials Science and Engineering: A,2019,762:138089. doi: 10.1016/j.msea.2019.138089
|
[16] |
杨爽, 彭志龙, 姚寅, 等. 龟壳角质层的微结构特征及拉伸力学性能[J]. 中国科学: 物理学, 力学, 天文学, 2020, 50(9):185-193.
YANG Shuang, PENG Zhilong, YAO Yin, et al. The microstructure and tensile property of the cuticle of turtle shells[J]. Chinese Science: Physics, Mechanics, Astronomy,2020,50(9):185-193(in Chinese).
|
[17] |
LI H, WANG X, HU X, et al. Vibration and damping study of multifunctional grille composite sandwich plates with an IMAS design approach[J]. Composites Part B: Engineering,2021,223:109078. doi: 10.1016/j.compositesb.2021.109078
|
[18] |
PENG X, DAI Z, LIU J, et al. Design and simulation of sandwich structure of exoskeleton backplate based on biological inspiration[J]. Journal of Physics: Conference Series. IOP Publishing,2021,1885(5):052066. doi: 10.1088/1742-6596/1885/5/052066
|
[19] |
THORSSON S I, WAAS A M, RASSAIAN M. Low-velocity impact predictions of composite laminates using a continuum shell based modeling approach part B: BVID impact and compression after impact[J]. International Journal of Solids and Structures,2018,155:201-212. doi: 10.1016/j.ijsolstr.2018.07.018
|
[20] |
BOGENFELD R, KREIKEMEIER J, WILLE T. Review and benchmark study on the analysis of low-velocity impact on composite laminates[J]. Engineering Failure Analysis,2018,86:72-99. doi: 10.1016/j.engfailanal.2017.12.019
|
[21] |
LE V T, SAN H N, GOO N S. Advanced sandwich structures for thermal protection systems in hypersonic vehicles: A review[J]. Composites Part B: Engineering,2021,226:109301. doi: 10.1016/j.compositesb.2021.109301
|
[22] |
HU J, LIU A, ZHU S, et al. Novel panel-core connection process and impact behaviors of CF/PEEK thermoplastic composite sandwich structures with truss cores[J]. Composite Structures,2020,251:112659. doi: 10.1016/j.compstruct.2020.112659
|
[23] |
张亚文, 陈秉智, 石姗姗, 等. 格栅-蜂窝混式芯体夹芯结构的低速冲击性能[J]. 复合材料学报, 2022, 39(1):381-389. doi: 10.1007/s10114-021-0023-4
ZHANG Yawen, CHEN Bingzhi, SHI Shanshan, et al. Low-velocity impact performance of grid-honeycomb hybrid core sandwich structure[J]. Acta Materiae Compositae Sinica,2022,39(1):381-389(in Chinese). doi: 10.1007/s10114-021-0023-4
|
[24] |
ÖZEN İ, ÇAVA K, GEDIKLI H, et al. Low-energy impact response of composite sandwich panels with thermoplastic honeycomb and reentrant cores[J]. Thin-Walled Structures,2020,156:106989. doi: 10.1016/j.tws.2020.106989
|
[25] |
卿彦, 廖宇, 刘婧祎, 等. 木基储能材料研究新进展[J]. 林业工程学报, 2021, 6(5):1-13.
QING Yan, LIAO Yu, LIU Jingyi, et al. New research progress of wood-based energy storage materials[J]. Journal of Forestry Engineering,2021,6(5):1-13(in Chinese).
|
[26] |
ROZYLO P. Experimental-numerical study into the stabi-lity and failure of compressed thin-walled composite profiles using progressive failure analysis and cohesive zone model[J]. Composite Structures,2021,257:113303. doi: 10.1016/j.compstruct.2020.113303
|
[27] |
ZHOU S, LI Y, FU K, et al. Progressive fatigue damage modelling of fibre-reinforced composite based on fatigue master curves[J]. Thin-Walled Structures,2021,158:107173. doi: 10.1016/j.tws.2020.107173
|
[28] |
NAGARAJ M H, REINER J, VAZIRI R, et al. Compressive damage modeling of fiber-reinforced composite laminates using 2D higher-order layer-wise models[J]. Composites Part B: Engineering,2021,215:108753. doi: 10.1016/j.compositesb.2021.108753
|
[29] |
LIU J L, LIU J Y, MEI J, et al. Investigation on manufacturing and mechanical behavior of all-composite sandwich structure with Y-shaped cores[J]. Composites Science and Technology,2018,159:87-102. doi: 10.1016/j.compscitech.2018.01.026
|
[30] |
DE CAMARGO F V, PAVLOVIC A, SCHENAL E C, et al. Explicit stacked-shell modelling of aged basalt fiber reinforced composites to low-velocity impact[J]. Composite Structures,2021,256:113017. doi: 10.1016/j.compstruct.2020.113017
|
[31] |
LU T, CHEN X, WANG H. Predicting compression-after-impact behavior of thermoplastic composite laminates by an experiment-based approach[J]. Composites Science and Technology,2021,213:108952. doi: 10.1016/j.compscitech.2021.108952
|