Volume 39 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
TAO Huan, ZHANG Mingrui, LEI Shiyun, et al. Bending performance of flexible quantum dot composite films and their electroluminescent device[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2792-2800. doi: 10.13801/j.cnki.fhclxb.20220124.002
Citation: TAO Huan, ZHANG Mingrui, LEI Shiyun, et al. Bending performance of flexible quantum dot composite films and their electroluminescent device[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2792-2800. doi: 10.13801/j.cnki.fhclxb.20220124.002

Bending performance of flexible quantum dot composite films and their electroluminescent device

doi: 10.13801/j.cnki.fhclxb.20220124.002
  • Received Date: 2021-11-24
  • Accepted Date: 2022-01-15
  • Rev Recd Date: 2022-01-08
  • Available Online: 2022-01-26
  • Publish Date: 2022-06-01
  • In recent years, bendable flexible electronic devices have attracted widespread attention, but the performance stability and bending stability of the devices have hindered their practical applications. In this paper, we focus on the changes of functional film and device performance before and after bending of flexible quantum dot light-emitting diodes (QLEDs) by applying bending force to QLEDs. The film parameters and device electrical properties were tested by regulating the bending radius of QLEDs. The polyethylene terephthalate-indium tin oxide (PET-ITO) composite transparent electrodes with different bending radii were analyzed by the finite element method, and the results show that as the bending radius decreases, the ITO electrode shows a more obvious stress concentration phenomenon. The morphological characterization and square resistance tests show that excessive bending will cause damage to the electrode material and increase the square resistance. Transient electroluminescence spectroscopy (TREL) was used to characterize the devices before and after bending. The results show that the decrease in the bending radius of curvature reduces the efficiency of charge transfer on the electrode, and the smaller bending radius of curvature leads to the increase of internal defects, which reduces the efficiency of carrier injection and transfer inside the device and affects the performance of the device.

     

  • loading
  • [1]
    YANG J, CHOI M K, KIM D H, et al. Designed assembly and integration of colloidal nanocrystals for device applications[J]. Advanced Materials,2016,28(6):1176-1207. doi: 10.1002/adma.201502851
    [2]
    DAI X, DENG Y, PENG X, et al. Quantum-dot light-emitting diodes for large-area displays: Towards the dawn of commercialization[J]. Advanced Materials,2017,29(14):1607022. doi: 10.1002/adma.201607022
    [3]
    PIMPUTKAR S, SPECK J S, DENBAARS S P, et al. Prospects for LED lighting[J]. Nature Photonics,2009,3(4):180-182. doi: 10.1038/nphoton.2009.32
    [4]
    YANG Y, ZHENG Y, CAO W, et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures[J]. Nature Photonics,2015,9(4):259-266. doi: 10.1038/nphoton.2015.36
    [5]
    ZHANG H, WANG S, SUN X, et al. Solution-processed vanadium oxide as an efficient hole injection layer for quantum-dot light-emitting diodes[J]. Journal of Materials Chemistry C,2017,5(4):817-823. doi: 10.1039/C6TC04050K
    [6]
    FU Y, KIM D, MOON H, et al. Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes[J]. Journal of Materials Chemistry C,2017,5(3):522-526. doi: 10.1039/C6TC05119G
    [7]
    DAI X, ZHANG Z, JIN Y, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots[J]. Nature,2014,515(7525):96-99. doi: 10.1038/nature13829
    [8]
    LI X, LIN Q, SONG J, et al. Quantum-dot light-emitting diodes for outdoor displays with high stability at high brightness[J]. Advanced Optical Materials,2019,8(2):1901145.
    [9]
    WANG L, LIN J, HU Y, et al. Blue quantum dot light-emitting diodes with high electroluminescent efficiency[J]. ACS Applied Materials & Interfaces,2017,9(44):38755-38760.
    [10]
    LIN J, DAI X, LIANG X, et al. High-performance quantum-dot light-emitting diodes using NiOx hole-injection layers with a high and stable work function[J]. Advanced Functional Materials,2019,30(5):1907265.
    [11]
    CAO W, XIANG C, YANG Y, et al. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring[J]. Nature Communications,2018,9(1):2608. doi: 10.1038/s41467-018-04986-z
    [12]
    KIM D Y, HAN Y C, KIM H C, et al. Highly transparent and flexible organic light-emitting diodes with structure optimized for anode/cathode multilayer electrodes[J]. Advanced Functional Materials,2015,25(46):7145-7153. doi: 10.1002/adfm.201502542
    [13]
    KIM H M, MOHD YUSOFF A R B, KIM T W, et al. Semi-transparent quantum-dot light emitting diodes with an inverted structure[J]. Journal of Materials Chemistry C,2014,2(12):2259-2265. doi: 10.1039/c3tc31932f
    [14]
    CHOI M K, PARK I, KIM D C, et al. Thermally controlled, patterned graphene transfer printing for transparent and wearable electronic/optoelectronic system[J]. Advanced Functional Materials,2015,25(46):7109-7118. doi: 10.1002/adfm.201502956
    [15]
    ZHAO B, HE Z, CHENG X, et al. Flexible polymer solar cells with power conversion efficiency of 8.7%[J]. Journal of Materials Chemistry C,2014,2(26):5077-5082. doi: 10.1039/C3TC32520B
    [16]
    YOON S H, KIM S, WOO H J, et al. Flexible quantum dot light-emitting diodes without sacrificing optical and electrical performance[J]. Applied Surface Science,2021,566(15):150614.
    [17]
    YANG X, MUTLUGUN E, DANG C, et al. Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers[J]. ACS Nano,2014,8(8):8224-8231. doi: 10.1021/nn502588k
    [18]
    JI W, WANG T, ZHU B, et al. Highly efficient flexible quantum-dot light emitting diodes with an ITO/Ag/ITO cathode[J]. Journal of Materials Chemistry C,2017,5(18):4543-4548. doi: 10.1039/C7TC00514H
    [19]
    TAK Y H, KIM K B, PARK H G, et al. Criteria for ITO (indium-tin-oxide) thin film as the bottom electrode of an organic light emitting diode[J]. Thin Solid Films,2002,411(1):12-16. doi: 10.1016/S0040-6090(02)00165-7
    [20]
    KIM J H, PARK J W. Improving the flexibility of large-area transparent conductive oxide electrodes on polymer substrates for flexible organic light emitting diodes by introducing surface roughness[J]. Organic Electronics,2013,14(12):3444-3452. doi: 10.1016/j.orgel.2013.09.016
    [21]
    ALI A H, HASSAN Z, SHUHAIMI A, et al. Enhancement of optical transmittance and electrical resistivity of post-annealed ITO thin films RF sputtered on Si[J]. Applied Surface Science,2018,443:544-547. doi: 10.1016/j.apsusc.2018.03.024
    [22]
    KIM K B, TAK Y H, HAN Y S, et al. Relationship between surface roughness of indium Tin oxide and leakage current of organic light-emitting diode[J]. Japanese Journal of Applied Physics,2003,42:L438-L440.
    [23]
    PUJARU S, MAJI P, SADHUKHAN P, et al. Dielectric relaxation and charge conduction mechanism in mechanochemically synthesized methylammonium bismuth iodide[J]. Materials in Electronics,2020,31:8670-8679. doi: 10.1007/s10854-020-03402-x
    [24]
    JIN Z W, WANG A J, ZHOU Q, et al. Detecting trap states in planar PbS colloidal quantum dot solar cells[J]. Scientific Reports,2016,6:37106. doi: 10.1038/srep37106
    [25]
    APURBA R, ATANU R, SAYAN D, et al. Frequency and tem-perature dependent dielectric properties of TiO2-V2O5 nanocomposites[J]. Applied Physics,2018,123:104102. doi: 10.1063/1.5012586
    [26]
    PRADHAN D K, MISRA P, PULI V S, et al. Studies on structural, dielectric, and transport properties of Ni0.65Zn0.35Fe2O4[J]. Applied Physics,2014,115:243904. doi: 10.1063/1.4885420
    [27]
    XU M, PENG Q, ZOU W, et al. A transient-electroluminescence study on perovskite light-emitting diodes[J]. Applied Physics Letters,2019,115(4):041102.1-041102.4. doi: 10.1063/1.5099277
    [28]
    ZHANG Z, GUAN X, KANG Z, et al. A direct evidence for the energy transfer from phosphorescent molecules to quantum dots in a driving light emitting diode[J]. Organic Electronics,2019,73:337-341. doi: 10.1016/j.orgel.2019.06.045
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (948) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return