Volume 39 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
WANG Haihua, JIN Qianqian, SHU Kewei. Research progress on metal phosphides anode materials for sodium ion batteries[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2586-2598. doi: 10.13801/j.cnki.fhclxb.20220120.009
Citation: WANG Haihua, JIN Qianqian, SHU Kewei. Research progress on metal phosphides anode materials for sodium ion batteries[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2586-2598. doi: 10.13801/j.cnki.fhclxb.20220120.009

Research progress on metal phosphides anode materials for sodium ion batteries

doi: 10.13801/j.cnki.fhclxb.20220120.009
  • Received Date: 2021-11-22
  • Accepted Date: 2022-01-11
  • Rev Recd Date: 2021-12-24
  • Available Online: 2022-01-20
  • Publish Date: 2022-06-01
  • Sodium ion batteries (SIBs) have attracted more and more attention because of their low cost and high safety. Due to the extremely high theoretical capacity, phosphorus-based material has been considered as one of the most promising anode materials for SIBs. However, phosphorus has shortcomings such as low conductivity and large volume expansion during sodiation-desodiation cycles, which significantly deteriorate its rate performance and cycle stability. Constructing metal phosphides by combining P with germanium, tin, copper or other metals can not only enhance their conductivity, but also significantly improve the reversibility and cycle performance of phosphorus-based anode materials. In this review, recent progress on metal phosphides and their composites with carbon nanotubes and graphene for SIBs anode materials were summarized. Furthermore, the current issues of metal phosphides anodes for SIBs were discussed, such as low practical capacity, poor cycle performance and so no. Meanwhile, various approaches and techniques to address these issues were proposed, including design and construction of composite materials, surface modification, regulation of size and morphology, advanced in-situ characterizations, etc. Finally, future perspectives of metal phosphides anode materials for SIBs were also presented.

     

  • loading
  • [1]
    TANG Yakun, WANG Hairong, ZHANG Yue, et al. In-situ reduction synthesis of one dimensional hybrid porous TiO@C anode for high-performance Li-ion storage[J]. Ceramics International,2021,47(4):5832-5836. doi: 10.1016/j.ceramint.2020.10.053
    [2]
    XIA Yang, QUE Lanfang, YU Fuda, et al. Boosting ion/e- transfer of Ti3C2 via interlayered and interfacial co-modification for high-performance Li-ion capacitors[J]. Chemical Engineering Journal,2021,404:127116. doi: 10.1016/j.cej.2020.127116
    [3]
    YANG Zhaofeng, YU Haifeng, HU Yanjie, et al. Pomegranate-like Ti-doped LiNi0.4Mn1.6O4 5 V-class cathode with superior high-voltage cycle and rate performance for Li-ion batteries[J]. Chemical Engineering Science,2021,231:116297. doi: 10.1016/j.ces.2020.116297
    [4]
    薛俊鹏, 夏笑虹, 刘洪波. MXene@Sn4P3复合材料的制备及在锂离子电池负极材料中的应用研究[J]. 陶瓷学报, 2020, 41(3):364-370.

    XUE Junpeng, XIA Xiaohong, LIU Hongbo. Preparation and application of MXene@Sn4P3 composite as anode for lithium ion batteries[J]. Journal of Ceramics,2020,41(3):364-370(in Chinese).
    [5]
    ZENG Cheng, XIE Fangxi, YANG Xianfeng, et al. Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage[J]. Angewandte Chemie International Edition,2018,57(28):8540-8544. doi: 10.1002/anie.201803511
    [6]
    ZHANG Jian, LIU Yongchang, ZHAO Xudong, et al. A novel NASICON-type Na4MnCr(PO4)3 demonstrating the energy density record of phosphate cathodes for sodium-ion batteries[J]. Advanced Materials,2020,32(11):1906348. doi: 10.1002/adma.201906348
    [7]
    夏广辉, 王丁, 李雪豹, 等. 钠离子电池金属硫化物负极材料的研究进展[J]. 材料导报, 2021, 35(13):13041-13051. doi: 10.11896/cldb.20010069

    XIA Guanghui, WANG Ding, LI Xuebao, et al. Recent research progress of metal sulfides as anode materials for sodium ion batteries[J]. Materials Reports,2021,35(13):13041-13051(in Chinese). doi: 10.11896/cldb.20010069
    [8]
    王思岚, 杨国锐, NASIR Muhammad salman, 等. 磷基钠离子电池负极材料研究进展[J]. 物理化学学报, 2021, 37(12):155, 156-182.

    WANG Silan, YANG Guorui, NASIR Muhammad salman, et al. Research progress on phosphorus-based anode mater-ials for sodium-ion batteries[J]. Acta Physico-Chimica Sinica,2021,37(12):155, 156-182(in Chinese).
    [9]
    SUN Dan, YE Delai, LIU Ping, et al. MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries[J]. Advanced Energy Materials,2018,8(10):1702383. doi: 10.1002/aenm.201702383
    [10]
    XU Zhenglong, YOON Gabin, PARK Kyuyoung, et al. Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries[J]. Nature Communications,2019,10:2598. doi: 10.1038/s41467-019-10551-z
    [11]
    CONG Lin, TIAN Guorong, LUO Dongyue, et al. Hydrothermally assisted transformation of corn stalk wastes into high-performance hard carbon anode for sodium-ion batteries[J]. Journal of Electroanalytical Chemistry,2020,871:114249. doi: 10.1016/j.jelechem.2020.114249
    [12]
    BOBYLEVA Z V, DROZHZHIN O A, DOSAEV K A, et al. Unveiling pseudocapacitive behavior of hard carbon anode materials for sodium-ion batteries[J]. Electrochimica Acta,2020,354:136647. doi: 10.1016/j.electacta.2020.136647
    [13]
    LI Changhao, SUN Yi, WU Qiujie, et al. A novel design strategy of a practical carbon anode material from a single lignin-based surfactant source for sodium-ion batteries[J]. Chemical Communications,2020,56(45):6078-6081. doi: 10.1039/D0CC01431A
    [14]
    PEI Zengxia, MENG Qiangqiang, WEI Li, et al. Toward efficient and high rate sodium-ion storage: A new insight from dopant-defect interplay in textured carbon anode mater-ials[J]. Energy Storage Materials,2020,28:55-63. doi: 10.1016/j.ensm.2020.02.033
    [15]
    YU Peng, TANG Wei, WU Fangfang, et al. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: A review[J]. Rare Metals,2020,39(9):1019-1033. doi: 10.1007/s12598-020-01443-z
    [16]
    ZHANG Wu, LIU Tiefeng, WANG Yao, et al. Strategies to improve the performance of phosphide anodes in sodium-ion batteries[J]. Nano Energy,2021,90:106475. doi: 10.1016/j.nanoen.2021.106475
    [17]
    YANG Ze, SONG Yuwei, ZHANG Chunfang, et al. Porous 3D silicon-diamondyne blooms excellent storage and diffusion properties for Li, Na, and K ions[J]. Advanced Energy Materials,2021,11(33):2101197. doi: 10.1002/aenm.202101197
    [18]
    KIM Youngjin, PARK Yuwon, CHOI Aram, et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries[J]. Advanced Materials,2013,25(22):3045-3049. doi: 10.1002/adma.201204877
    [19]
    QIAN Jiangfeng, WU Xianyong, CAO Yuliang, et al. High capacity and rate capability of amorphous phosphorus for sodium ion batteries[J]. Angewandte Chemie,2013,125(17):4731-4734. doi: 10.1002/ange.201209689
    [20]
    徐汝辉, 姚耀春, 梁风. 磷基负极材料在金属离子电池中的现状与趋势[J]. 化工进展, 2019, 38(9):4142-4154.

    XU Ruhui, YAO Yaochun, LIANG Feng. Status and development trend of phosphorus-based materials applied in metal ion battery anode[J]. Chemical Industry and Engineering Progress,2019,38(9):4142-4154(in Chinese).
    [21]
    SUN Jie, ZHENG Guangyuan, LEE Hyun Wook, et al. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes[J]. Nano Letters,2014,14(8):4573-4580. doi: 10.1021/nl501617j
    [22]
    FENG Ligang, XUE Huaiguo. Advances in transition-metal phosphide applications in electrochemical energy storage and catalysis[J]. ChemElectroChem,2016,4(1):20-34.
    [23]
    LI Weijie, YANG Qiuran, CHOU Shulei, et al. Cobalt phosphide as a new anode material for sodium storage[J]. Journal of Power Sources,2015,294:627-632. doi: 10.1016/j.jpowsour.2015.06.097
    [24]
    LI Weijie, CHOU Shulei, WANG Jiazhao, et al. A new, cheap, and productive FeP anode material for sodium-ion batteries[J]. Chemical Communications,2015,51(17):3682-3685. doi: 10.1039/C4CC09604E
    [25]
    BREHM W, SANTHOSHA A L, ZHANG Z G, et al. Mechanochemically synthesized Cu3P/C composites as a conversion electrode for Li-ion and Na-ion batteries in different electrolytes[J]. Journal of Power Sources,2020,6:100031. doi: 10.1016/j.powera.2020.100031
    [26]
    张芃, 汝强, 郭庆, 等. 高能球磨制备钠离子电池负极材料CuP2/C[J]. 电池, 2017, 47(6):319-322.

    ZHANG Peng, RU Qiang, GUO Qing, et al. Preparing anode material CuP2/C for sodium ion battery via high-energy ball-milling[J]. Battery Bimonthly,2017,47(6):319-322(in Chinese).
    [27]
    ZHANG Yuanjun, WANG Guanyao, WANG Liang, et al. Graphene-encapsulated CuP2: A promising anode material with high reversible capacity and superior rate-performance for sodium-ion batteries[J]. Nano Letters,2019,19(4):2575-2582. doi: 10.1021/acs.nanolett.9b00342
    [28]
    LI Wenwu, SHEN Pengfei, LIAO Jun, et al. Cu2P7-black P-MWCNTs (CuP5/MWCNTs): An advanced hybrid anode for Li/Na-ion batteries[J]. Materials Letters,2019,253:263-267. doi: 10.1016/j.matlet.2019.06.080
    [29]
    FULLENWARTH J, DARWICHE A, SOARES A, et al. NiP3: A promising negative electrode for Li-and Na-ion batteries[J]. Journal of Materials Chemistry A,2014,2(7):2050-2059. doi: 10.1039/C3TA13976J
    [30]
    ZHANG Yuanxing, SUN Li, LI Yitao, et al. CTAB-modified Ni2P@ACNT composite with enhanced supercapacitive and lithium/sodium storage performance[J]. Journal of Electroanalytical Chemistry,2020,873:114441. doi: 10.1016/j.jelechem.2020.114441
    [31]
    ZHANG Ruihan, RAVEENDRAN Vidhur, HE Yining, et al. A poriferous nanoflake-assembled flower-like Ni5P4 anode for high-performance sodium-ion batteries[J]. Energy Material Advances,2021(1):333-341.
    [32]
    GUO Huinan, CHEN Chengcheng, CHEN Kai, et al. High performance carbon-coated hollow Ni12P5 nanocrystals decorated on GNS as advanced anodes for lithium and sodium storage[J]. Journal of Materials Chemistry A,2017,5(42):22316-22324. doi: 10.1039/C7TA06843C
    [33]
    SHI Shanshan, LI Zhen, SHEN Liying, et al. Electrospun free-standing FeP@NPC film for flexible sodium ion batteries with remarkable cycling stability[J]. Energy Storage Materials,2020,29:78-83. doi: 10.1016/j.ensm.2020.03.029
    [34]
    ZHANG Wanjie, DAHBI Mouad, AMAGASA Shota, et al. Iron phosphide as negative electrode material for Na-ion batteries[J]. Electrochemistry Communications,2016,69:11-14. doi: 10.1016/j.elecom.2016.05.005
    [35]
    LI Xinwei, LI Wenwu, SHEN Pengfei, et al. Layered GeP-black P (Ge2P3): An advanced binary-phase anode for Li/Na-storage[J]. Ceramics International,2019,45(12):15711-15714. doi: 10.1016/j.ceramint.2019.04.219
    [36]
    WANG Ting, ZHANG Kai, PARK Mihui, et al. Highly reversible and rapid sodium storage in GeP3 with synergistic effect from outside-in optimization[J]. ACS nano,2020,14(4):4352-4365. doi: 10.1021/acsnano.9b09869
    [37]
    JING Yu, MA Yandong, LI Yafei, et al. GeP3: A small indirect band gap 2D crystal with high carrier mobility and strong interlayer quantum confinement[J]. Nano Letters,2016,17(3):1833-1838.
    [38]
    DENG Xiaoyu, CHEN Xianfei, HUANG Yi, et al. Two-dimensional GeP3 as a high capacity anode material for non-lithium-ion batteries[J]. The Journal of Physical Chemistry C,2019,123(8):4721-4728. doi: 10.1021/acs.jpcc.8b11574
    [39]
    WEI Yaqing, CHEN Jiajun, HE Jun, et al. Morphology processing by encapsulating GeP5 nanoparticles into nano-fibers toward enhanced thermo/electrochemical stability[J]. ACS Applied Materials & Interfaces,2018,10:32162-32170.
    [40]
    NING Qiuli, HOU Baohua, WANG Yingying, et al. Hierarchical GeP5/carbon nanocomposite with dual-carbon conductive network as promising anode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces,2018,10(43):36902-36909.
    [41]
    YANG Fuhua, HONG Jian, HAO Junnan, et al. Ultrathin few-layer GeP nanosheets via lithiation-assisted chemical exfoliation and their application in sodium storage[J]. Advanced Energy Materials,2020,10(14):1903826. doi: 10.1002/aenm.201903826
    [42]
    TSENG Kuanwei, HUANG Shengbor, CHANG Weichung, et al. Synthesis of mesoporous germanium phosphide microspheres for high-performance lithium-ion and sodium-ion battery anodes[J]. Chemistry of Materials,2018,30(13):4440-4447. doi: 10.1021/acs.chemmater.8b01922
    [43]
    LI Nan, WANG Ying, LIU Liangsen, et al. "Self-doping" defect engineering in SnP3@gamma-irradiated hard carbon anode for rechargeable sodium storage[J]. Journal of Colloid and Interface Science,2021,592(4):279-290.
    [44]
    ZENG Tianbiao, FENG Dong, XIE Yuhui, et al. Nano Sn4P3 embedded in nitrogenous carbon matrix as the anode of sodium ion battery for enhanced cyclability[J]. Journal of Alloys and Compounds,2021,874(8):159944.
    [45]
    杨皖皖, 孙硕, 王健, 等. 机械球磨法制备Sn4P3/RGO钠离子电池负极材料及其电化学性能研究[J]. 常熟理工学院学报, 2019, 33(2):6-10. doi: 10.3969/j.issn.1008-2794.2019.02.002

    YANG Wanwan, SUN Shuo, WANG Jian, et al. Electrochemical properties for Sn4P3/RGO by mechanical ball milling method as anode materials for sodium ion batteries[J]. Journal of Changshu Institute of Technology,2019,33(2):6-10(in Chinese). doi: 10.3969/j.issn.1008-2794.2019.02.002
    [46]
    XU Y L, PENG B, MULDER F M. A high-rate and ultrastable sodium ion anode based on a novel Sn4P3-P@graphene nanocomposite[J]. Advanced Energy Materials,2018,8(3):1701847. doi: 10.1002/aenm.201701847
    [47]
    WANG Ying, SHI Haiting, NIU Jiarong, et al. Self-healing Sn4P3@Hard carbon Co-storage anode for sodium-ion batteries[J]. Journal of Alloys and Compounds,2021,851:156746. doi: 10.1016/j.jallcom.2020.156746
    [48]
    ZHAO Wenxi, MA Xiaoqing, GAO Lixia, et al. Engineering carbon-nanochain concatenated hollow Sn4P3 nanospheres architectures as ultrastable and high-rate anode materials for sodium ion batteries[J]. Carbon,2020,167:736-745. doi: 10.1016/j.carbon.2020.06.050
    [49]
    LIU Junfeng, WANG Shutao, KRAVCHYK Kostiantyn, et al. SnP nanocrystals as anode material for Na-ion battery[J]. Journal of Materials Chemistry A,2018,6(23):10958-10966. doi: 10.1039/C8TA01492B
    [50]
    FAN Xiulin, MAO Jianfeng, ZHU Yujie, et al. Superior stable self-healing SnP3 anode for sodium-ion batteries[J]. Advanced Energy Materials,2015,5(18):2314-2316.
    [51]
    LI Xinwei, LI Wenwu, YU Jiale, et al. Self-supported Zn3P2 nanowires-assembly bundles grafted on Ti foil as an advanced integrated electrodes for lithium/sodium ion batteries with high performances[J]. Journal of Alloys and Compounds,2017,724:932-939. doi: 10.1016/j.jallcom.2017.07.016
    [52]
    NAM K H, HWA Y, PARK C M. Zinc phosphides as outstanding sodium-ion battery anodes[J]. ACS Applied Materials & Interfaces,2020,12(13):15053-15062.
    [53]
    XIAO Lifen, LU Haiyan, FANG Yongjin, et al. Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode[J]. Advanced Energy Materials,2018,8(20):1703238. doi: 10.1002/aenm.201703238
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (1532) PDF downloads(129) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return