Citation: | KAN Lili, ZHU Jialun, WANG Fei, et al. Mechanical properties of polyethylene fiber reinforced red mud-alkali slag composite[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5367-5374. DOI: 10.13801/j.cnki.fhclxb.20220104.003 |
[1] |
CHEN C, HABERT G, BOUZIDI Y, et al. LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete[J]. Resources, Conservation & Recycling,2010,54(12):1231-1240.
|
[2] |
SAFARI Z, KURDAN R, Al-HADAD B, et al. Mechanical characteristics of pumice-based geopolymer paste[J]. Resource, Conservation & Recycling,2020,162:105055.
|
[3] |
TANG Z, LI W, VIVIAN W Y T, et al. Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials[J]. Resources, Conservation & Recycling,2020,X6:100036.
|
[4] |
李升涛, 陈徐东, 张伟, 等. 基于长江下游超细疏浚砂的碱激发矿渣混凝土力学性能[J]. 复合材料学报, 2022, 39(1): 335-343.
LI Shengtao, CHEN Xudong, ZHANG Wei, et al. Mechanical properties of alkali activated slag concrete with ultra fine dredged sand from Yangtze river[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 335-343(in Chinese).
|
[5] |
阚黎黎, 庞成凯, 王飞, 等. 聚乙烯纤维增强高延性碱矿渣复合材料的拉压性能及裂缝分布[J]. 复合材料学报, 2021, 38(12):4309-4316.
KAN Lili, PANG Chengkai, WANG Fei, et al. Tensile and compres-sive properties and crack distribution of PE fiber reinforced high ductile alkali-activated slag composites[J]. Acta Materiae Compositae Sinica,2021,38(12):4309-4316(in Chinese).
|
[6] |
ZHANG Z, ZHU Y, YANG T, et al. Conversion of local industrial wastes into greener cement through geopolymer technology: A case study of high-magnesium nickel slag[J]. Journal of Cleaner Production,2017,141:463-471. DOI: 10.1016/j.jclepro.2016.09.147
|
[7] |
KAN L, SHI R, ZHAO Y, et al. Feasibility study on using incineration fly ash from municipal solid waste to develop high ductile alkali-activated composites[J]. Journal of Cleaner Production,2020,254:120168. DOI: 10.1016/j.jclepro.2020.120168
|
[8] |
OHNO M, LI V C. An integrated method of engineered geopolymer composite[J]. Cement and Concrete Composite,2018,88:73-85. DOI: 10.1016/j.cemconcomp.2018.02.001
|
[9] |
LEE B Y, CHOI C G, LIM H J, et al. Strain hardening fiber reinforced alkali-activated mortar—A feasibility study[J]. Construction and Building Materials, 2012, 37: 15-20.
|
[10] |
GENG C, CHEN C, SHI X, et al. Recovery of metals from municipal solid waste incineration fly ash and red mud via a co-reduction process[J]. Resources, Conservation & Recycling,2020,154:104600.
|
[11] |
ZHANG R, ZHENG S, MA S, et al. Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process[J]. Journal of Hazardous Materials,2021,189(3):827-835.
|
[12] |
YUAN S, LIU X, GAO P, et al. A semi-industrial experiment of suspension magnetization roasting technology for separation of iron minerals from red mud[J]. Journal of Hazardous Materials,2020,394:122579. DOI: 10.1016/j.jhazmat.2020.122579
|
[13] |
RAI S, WASEWAR K, LATAVE D, et al. Feasibility of red mud neutralization with seawater using Taguchi’s methodology[J]. International Journal of Environmental Science & Technology,2013,10(2):305-314.
|
[14] |
PANDA S, COSTA B R, SHAH S, et al. Biotechnological trends and market impact on the recovery of rare earth elements from bauxite residue (red mud)-A review[J]. Resources, Conservation & Recycling,2021,171:105645.
|
[15] |
PPTIKES Y, ANFELOPOULOS G N. Bauxite residue in cement and cementitious applications: Current status and a possible way forward[J]. Resource, Conservation & Recycling,2013,73:53-63.
|
[16] |
NIE Q, HU W, AI T, et al. Strength properties of geopolymers derived from original and desulfurized red mud cured at ambient temperature[J]. Construction and Building Materials,2016,125(5):905-911.
|
[17] |
HE J, JIE Y, ZHANG J, et al. Synthesis and characterization of red mud and rice husk ash-based geopolymer compo-sites[J]. Cement and Concrete Composites, 2013, 37: 108-118.
|
[18] |
YE N, YANG J, LIANG S, et al. Synthesis and strength optimization of one-part geopolymer based on red mud[J]. Construction and Building Materials,2016,111:317-325. DOI: 10.1016/j.conbuildmat.2016.02.099
|
[19] |
HU W, NIE Q, HUANG B, et al. Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes[J]. Journal of Cleaner Production,2018,186:799-806. DOI: 10.1016/j.jclepro.2018.03.086
|
[20] |
Japan Society of Civil Engineers. Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC)[S]. Tokyo: Japan Society of Civil Engineers, 2008.
|
[21] |
American Society for Testing and Materials. American standard test method for compressive strength of hydrau-lic cement mortars: ASTM C109/C109M-13[S]. West Conshohocken: American Society for Testing and Materials International, 2013.
|
[22] |
American Society for Testing and Materials. American standard test method for linear-elastic plane strain fracture toughness KIC of metallic materials: ASTM E399[S]. West Conshohocken: American Society for Testing and Materials International, 2012.
|
[23] |
ZHAO Y, SHI T, CAO L, et al. Influence of steel slag on the properties of alkali-activated fly ash and blast-furnace slag based fiber reinforced composites[J]. Cement and Concrete Composites,2020,116:103875.
|
[24] |
BALCZAR I, KORIM T, DOBRADI A. Correlation of strength to apparent porosity of geopolymers-Understanding through variations of setting time[J]. Construction and Building Materials,2015,93(15):983-988.
|
[25] |
YU J, LIN J, ZHANG Z, et al. Mechanical performance of ECC with high-volume fly ash after sub-elevated tempera-tures[J]. Construction and Building Materials,2015,99:82-89. DOI: 10.1016/j.conbuildmat.2015.09.002
|
[26] |
KIM J K, KIM J S, HA G J, et al. Tensile and fiber dispersion performance of ECC (engineered cementitious compo-sites) produced with ground granulated blast furnace slag[J]. Cement and Concrete Research,2007,37(7):1096-1105. DOI: 10.1016/j.cemconres.2007.04.006
|
[27] |
KANDA T, LI V C. Multiple cracking sequence and saturation in fiber reinforced cementitious composites[J]. Concrete Research and Technology,1998,9(2):19-33. DOI: 10.3151/crt1990.9.2_19
|
[28] |
KANDA T, LI V C. Practical design criteria for saturated pseudo strain hardening behavior in ECC[J]. Journal of Advanced Concrete Technology,2006,4(1):59-72. DOI: 10.3151/jact.4.59
|
[29] |
ZHANG Z, ZHU Y, ZHU H, et al. Effect of drying proce-dures on pore structure and phase evolution of alkali-activated cements[J]. Cement and Concrete Composites,2018,96:194-203.
|
[30] |
LEE W, DEVEBTER J V. Structural reorganisation of class F fly ash in alkaline silicate solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002,211(1):49-66.
|
[31] |
ISMAIL I, BERNAL S, PROVIS J L, et al. Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash[J]. Cement and Concrete Compo-sites,2014,45:125-135. DOI: 10.1016/j.cemconcomp.2013.09.006
|
[32] |
YU P, KIRKPATRICK R J, POE B, et al. Structure of calcium silicate hydrate (C-S-H): Near-, mid-, and far-infrared spectroscopy[J]. Journal of the American Ceramic Society, 1999, 82(3): 742–748.
|
[33] |
ZHANG J, LI S, LI Z. Investigation the synergistic effects in quaternary binder containing red mud, blast furnace slag, steel slag and flue gas desulfurization gypsum based on artificial neural networks[J]. Journal of Cleaner Production,2020,273:122972. DOI: 10.1016/j.jclepro.2020.122972
|
1. |
王冲,刘国磊,何国志,李公成,马秋峰,刘树龙,李庆国. 全尾砂固废基充填材料胶凝特性与纤维强化效应研究. 矿业研究与开发. 2024(06): 112-120 .
![]() | |
2. |
滕晓丹,黎永鸿,韦宵宁,周俊杰. 橡胶颗粒和稻壳灰复掺改性ECC拉压性能与裂缝特征. 复合材料学报. 2024(07): 3716-3725 .
![]() | |
3. |
阚黎黎,李明轩,王飞,赵易馨,王洲. 激发剂模数对高延性碱矿渣复合材料拉压性能的影响. 材料科学与工程学报. 2024(04): 562-568+601 .
![]() | |
4. |
王兴国,柳志炫,龚健,张向冈. 非晶合金纤维对混凝土性能影响研究进展. 复合材料科学与工程. 2024(11): 143-148 .
![]() | |
5. |
刘树龙,王贻明,吴爱祥,张敏哲,王志凯,吴立波. 赤泥复合充填材料浸出行为及固化机制. 复合材料学报. 2023(12): 6729-6739 .
![]() | |
6. |
阚黎黎,刘能,王飞. 氯化钡对高延性碱矿渣复合材料力学性能的影响. 建筑材料学报. 2023(12): 1303-1309 .
![]() |