Citation: | KAN Lili, ZHU Jialun, WANG Fei, et al. Mechanical properties of polyethylene fiber reinforced red mud-alkali slag composite[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5367-5374. DOI: 10.13801/j.cnki.fhclxb.20220104.003 |
[1] |
CHEN C, HABERT G, BOUZIDI Y, et al. LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete[J]. Resources, Conservation & Recycling,2010,54(12):1231-1240.
|
[2] |
SAFARI Z, KURDAN R, Al-HADAD B, et al. Mechanical characteristics of pumice-based geopolymer paste[J]. Resource, Conservation & Recycling,2020,162:105055.
|
[3] |
TANG Z, LI W, VIVIAN W Y T, et al. Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials[J]. Resources, Conservation & Recycling,2020,X6:100036.
|
[4] |
李升涛, 陈徐东, 张伟, 等. 基于长江下游超细疏浚砂的碱激发矿渣混凝土力学性能[J]. 复合材料学报, 2022, 39(1): 335-343.
LI Shengtao, CHEN Xudong, ZHANG Wei, et al. Mechanical properties of alkali activated slag concrete with ultra fine dredged sand from Yangtze river[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 335-343(in Chinese).
|
[5] |
阚黎黎, 庞成凯, 王飞, 等. 聚乙烯纤维增强高延性碱矿渣复合材料的拉压性能及裂缝分布[J]. 复合材料学报, 2021, 38(12):4309-4316.
KAN Lili, PANG Chengkai, WANG Fei, et al. Tensile and compres-sive properties and crack distribution of PE fiber reinforced high ductile alkali-activated slag composites[J]. Acta Materiae Compositae Sinica,2021,38(12):4309-4316(in Chinese).
|
[6] |
ZHANG Z, ZHU Y, YANG T, et al. Conversion of local industrial wastes into greener cement through geopolymer technology: A case study of high-magnesium nickel slag[J]. Journal of Cleaner Production,2017,141:463-471. DOI: 10.1016/j.jclepro.2016.09.147
|
[7] |
KAN L, SHI R, ZHAO Y, et al. Feasibility study on using incineration fly ash from municipal solid waste to develop high ductile alkali-activated composites[J]. Journal of Cleaner Production,2020,254:120168. DOI: 10.1016/j.jclepro.2020.120168
|
[8] |
OHNO M, LI V C. An integrated method of engineered geopolymer composite[J]. Cement and Concrete Composite,2018,88:73-85. DOI: 10.1016/j.cemconcomp.2018.02.001
|
[9] |
LEE B Y, CHOI C G, LIM H J, et al. Strain hardening fiber reinforced alkali-activated mortar—A feasibility study[J]. Construction and Building Materials, 2012, 37: 15-20.
|
[10] |
GENG C, CHEN C, SHI X, et al. Recovery of metals from municipal solid waste incineration fly ash and red mud via a co-reduction process[J]. Resources, Conservation & Recycling,2020,154:104600.
|
[11] |
ZHANG R, ZHENG S, MA S, et al. Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process[J]. Journal of Hazardous Materials,2021,189(3):827-835.
|
[12] |
YUAN S, LIU X, GAO P, et al. A semi-industrial experiment of suspension magnetization roasting technology for separation of iron minerals from red mud[J]. Journal of Hazardous Materials,2020,394:122579. DOI: 10.1016/j.jhazmat.2020.122579
|
[13] |
RAI S, WASEWAR K, LATAVE D, et al. Feasibility of red mud neutralization with seawater using Taguchi’s methodology[J]. International Journal of Environmental Science & Technology,2013,10(2):305-314.
|
[14] |
PANDA S, COSTA B R, SHAH S, et al. Biotechnological trends and market impact on the recovery of rare earth elements from bauxite residue (red mud)-A review[J]. Resources, Conservation & Recycling,2021,171:105645.
|
[15] |
PPTIKES Y, ANFELOPOULOS G N. Bauxite residue in cement and cementitious applications: Current status and a possible way forward[J]. Resource, Conservation & Recycling,2013,73:53-63.
|
[16] |
NIE Q, HU W, AI T, et al. Strength properties of geopolymers derived from original and desulfurized red mud cured at ambient temperature[J]. Construction and Building Materials,2016,125(5):905-911.
|
[17] |
HE J, JIE Y, ZHANG J, et al. Synthesis and characterization of red mud and rice husk ash-based geopolymer compo-sites[J]. Cement and Concrete Composites, 2013, 37: 108-118.
|
[18] |
YE N, YANG J, LIANG S, et al. Synthesis and strength optimization of one-part geopolymer based on red mud[J]. Construction and Building Materials,2016,111:317-325. DOI: 10.1016/j.conbuildmat.2016.02.099
|
[19] |
HU W, NIE Q, HUANG B, et al. Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes[J]. Journal of Cleaner Production,2018,186:799-806. DOI: 10.1016/j.jclepro.2018.03.086
|
[20] |
Japan Society of Civil Engineers. Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC)[S]. Tokyo: Japan Society of Civil Engineers, 2008.
|
[21] |
American Society for Testing and Materials. American standard test method for compressive strength of hydrau-lic cement mortars: ASTM C109/C109M-13[S]. West Conshohocken: American Society for Testing and Materials International, 2013.
|
[22] |
American Society for Testing and Materials. American standard test method for linear-elastic plane strain fracture toughness KIC of metallic materials: ASTM E399[S]. West Conshohocken: American Society for Testing and Materials International, 2012.
|
[23] |
ZHAO Y, SHI T, CAO L, et al. Influence of steel slag on the properties of alkali-activated fly ash and blast-furnace slag based fiber reinforced composites[J]. Cement and Concrete Composites,2020,116:103875.
|
[24] |
BALCZAR I, KORIM T, DOBRADI A. Correlation of strength to apparent porosity of geopolymers-Understanding through variations of setting time[J]. Construction and Building Materials,2015,93(15):983-988.
|
[25] |
YU J, LIN J, ZHANG Z, et al. Mechanical performance of ECC with high-volume fly ash after sub-elevated tempera-tures[J]. Construction and Building Materials,2015,99:82-89. DOI: 10.1016/j.conbuildmat.2015.09.002
|
[26] |
KIM J K, KIM J S, HA G J, et al. Tensile and fiber dispersion performance of ECC (engineered cementitious compo-sites) produced with ground granulated blast furnace slag[J]. Cement and Concrete Research,2007,37(7):1096-1105. DOI: 10.1016/j.cemconres.2007.04.006
|
[27] |
KANDA T, LI V C. Multiple cracking sequence and saturation in fiber reinforced cementitious composites[J]. Concrete Research and Technology,1998,9(2):19-33. DOI: 10.3151/crt1990.9.2_19
|
[28] |
KANDA T, LI V C. Practical design criteria for saturated pseudo strain hardening behavior in ECC[J]. Journal of Advanced Concrete Technology,2006,4(1):59-72. DOI: 10.3151/jact.4.59
|
[29] |
ZHANG Z, ZHU Y, ZHU H, et al. Effect of drying proce-dures on pore structure and phase evolution of alkali-activated cements[J]. Cement and Concrete Composites,2018,96:194-203.
|
[30] |
LEE W, DEVEBTER J V. Structural reorganisation of class F fly ash in alkaline silicate solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002,211(1):49-66.
|
[31] |
ISMAIL I, BERNAL S, PROVIS J L, et al. Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash[J]. Cement and Concrete Compo-sites,2014,45:125-135. DOI: 10.1016/j.cemconcomp.2013.09.006
|
[32] |
YU P, KIRKPATRICK R J, POE B, et al. Structure of calcium silicate hydrate (C-S-H): Near-, mid-, and far-infrared spectroscopy[J]. Journal of the American Ceramic Society, 1999, 82(3): 742–748.
|
[33] |
ZHANG J, LI S, LI Z. Investigation the synergistic effects in quaternary binder containing red mud, blast furnace slag, steel slag and flue gas desulfurization gypsum based on artificial neural networks[J]. Journal of Cleaner Production,2020,273:122972. DOI: 10.1016/j.jclepro.2020.122972
|
1. |
程超,张晨宇,裴志磊,陈正国,周飞,周金利,张辉,孙泽玉,余木火. 双环戊二烯单体预聚增粘及其碳纤维增强复合材料性能评价. 复合材料学报. 2024(01): 155-169 .
![]() | |
2. |
郝励. 碳纤维对SiC陶瓷基材料的导热性能影响研究. 化学与粘合. 2024(03): 235-239 .
![]() | |
3. |
柯锋,王朝恩. 热压制备的碳纤维复合材料不同温度的机械性能测试. 粘接. 2023(10): 112-114 .
![]() |