YANG Jiangyan, MA Xiaofei, WANG Hui, et al. Experimental study and modeling of long-term viscoelastic behavior of resin matrix composite with consideration of physical aging effect[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4997-5007. DOI: 10.13801/j.cnki.fhclxb.20211105.002
Citation: YANG Jiangyan, MA Xiaofei, WANG Hui, et al. Experimental study and modeling of long-term viscoelastic behavior of resin matrix composite with consideration of physical aging effect[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4997-5007. DOI: 10.13801/j.cnki.fhclxb.20211105.002

Experimental study and modeling of long-term viscoelastic behavior of resin matrix composite with consideration of physical aging effect

More Information
  • Received Date: August 22, 2021
  • Revised Date: October 24, 2021
  • Accepted Date: October 28, 2021
  • Available Online: November 07, 2021
  • In order to better understand the short-term and long-term deformation behaviors of carbon fiber reinforced epoxy (CF/EP) composite materials, a series of tensile creep tests of a type of CF/EP laminated composite material under constant loads, typically, 20%, 30% and 40% of ultimate tensile strength and constant temperatures (25°C and 50°C) were conducted. The material deforms in a remarkable time-dependent way, and behaves both clearly creep temperature effect and physical aging phenomena. Specifically, the tensile strains increase during the short time duration after the tests begin, similar to creep deformation. When the testing time exceeds physical aging characteristic time, the tensile strains start to decrease during the most of loading period. To characterize reasonably this particular deformation behavior, a linear viscoelastic model was developed to describe both creep temperature effect and physical ageing effect. The related viscoelastic constitutive relations of this composite material were derived, and further numerically implemented using the Prony series. In addition, its numerical algorithm was proposed within a finite element framework, and numerical analysis was performed via UMAT subroutine. The new theoretical model is then verified by a comparison of experimental results to numerical ones.
  • [1]
    沈观林, 胡更开. 复合材料力学[M]. 北京: 清华大学出版社, 2006.

    SHEN Guanlin, HU Gengkai. Mechanics of composite materials[M]. Beijing: Tsinghua University Press, 2006(in Chinese).
    [2]
    HUTCHINSON J M. Physical aging of polymers[J]. Progress in Polymer Science,1995,20(4):703-760. DOI: 10.1016/0079-6700(94)00001-I
    [3]
    HU H, SUN C T. The characterization of physical aging in polymeric composites[J]. Composites Science and Technology,2000,60(14):2693-2698. DOI: 10.1016/S0266-3538(00)00127-5
    [4]
    ODEGARD G M, BANDYOPADHYAY A. Physical aging of epoxy polymers and their composites[J]. Journal of Polymer Science, Part B: Polymer Physics,2011,49(24):1695-1716. DOI: 10.1002/polb.22384
    [5]
    LEVEQUE D, SCHIEFFER A, MAIRE J F. Analysis of how thermal aging affects the long-term mechanical behavior and strength of polymer-matrix composites[J]. Composites Science and Technology,2005,65(3-4):395-401. DOI: 10.1016/j.compscitech.2004.09.016
    [6]
    刘鹏飞, 赵启林, 王景全. 树脂基复合材料蠕变性能研究进展[J]. 玻璃钢/复合材料, 2013(3):109-117. DOI: 10.3969/j.issn.1003-0999.2013.03.025

    LIU Pengfei, ZHAO Qilin, WANG Jingquan. Process in research of the creep behavior of polymers[J]. Fiber Reinforced Plastics/Composites,2013(3):109-117(in Chinese). DOI: 10.3969/j.issn.1003-0999.2013.03.025
    [7]
    曲艳双, 朱迅, 董鹏, 等. 树脂基复合材料的粘弹性研究进展[J]. 纤维复合材料, 2008, 25(1):42-44.

    QU Yanshuang, ZHU Xun, DONG Peng, et al. Progress in the development of study on viscoelasticity behavior of resin matrix composites[J]. Fiber Composites,2008,25(1):42-44(in Chinese).
    [8]
    朱迅, 王明寅, 王荣国, 等. 纤维增强聚合物基复合材料的蠕变力学研究进展[J]. 纤维复合材料, 2004, 21(3):51-53. DOI: 10.3969/j.issn.1003-6423.2004.03.016

    ZHU Xun, WANG Mingyin, WANG Rongguo, et al. Progress in the development of creep behavior of fiber reinforced polymer composites[J]. Fiber Composites,2004,21(3):51-53(in Chinese). DOI: 10.3969/j.issn.1003-6423.2004.03.016
    [9]
    GOERTZEN W K, KESSLER M R. Creep behavior of carbon fiber/epoxy matrix composites[J]. Materials Science and Engineering A,2006,421(1-2):217-225. DOI: 10.1016/j.msea.2006.01.063
    [10]
    MULIANA A, NAIR A, WAGNER S. Characterization of thermo-mechanical and long-term behaviors of multi-layered composite materials[J]. Composites Science and Technology,2006,66(15):2907-2924. DOI: 10.1016/j.compscitech.2006.02.016
    [11]
    BERARDI V P, PERRELLA M, CRICRI G. Creep behavior of GFRP laminates and their phases: Experimental investigation and analytical modeling[J]. Composites Part B: Engineering,2017,122:136-144. DOI: 10.1016/j.compositesb.2017.04.015
    [12]
    张尧, 朱四荣, 陆士平, 等. 考虑界面效应的GFRP复合材料蠕变模型[J]. 复合材料学报, 2021, 38(11):3682-3692. DOI: 10.13801/j.cnki.fhclxb.20210119.001

    ZHAO Rao, ZHU Sirong, LU Shiping, et al. Creep model of GFRP composites considering interface effect[J]. Acta Materiae Compositae Sinica,2021,38(11):3682-3692(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20210119.001
    [13]
    曹岩, 徐海龙, 王伟宏, 等. 模压成型的杨木纤维/高密度聚乙烯复合材料蠕变性能和蠕变模型[J]. 复合材料学报, 2016, 33(6):1174-1178. DOI: 10.13801/j.cnki.fhclxb.20160107.004

    CAO Yan, XU Hailong, WANG Weihong, et al. Creep properties and creep model of poplar wood fiber/high-density polyethylene composites prepared by compression molding[J]. Acta Materiae Compositae Sinica,2016,33(6):1174-1178(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20160107.004
    [14]
    韩霞, 王继辉, 倪爱清, 等. 应力水平和纤维角度对CGF/PP复合材料蠕变 行为的影响及其Burgers模型参数的数值预测[J]. 复合材料学报, 2019, 36(5):1216-1225. DOI: 10.13801/j.cnki.fhclxb.20180725.003

    HAN Xia, WANG Jihui, NI Aiqing, et al. Effects of stress levels and fiber orientations on creep behavior of CGF/PP composite and numerical prediction of Burgers model parameters[J]. Acta Materiae Compositae Sinica,2019,36(5):1216-1225(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20180725.003
    [15]
    SULLIVAN J L. Creep and physical aging of composites[J]. Composites Science and Technology,1990,39(3):207-232. DOI: 10.1016/0266-3538(90)90042-4
    [16]
    BRINSON L C, GATES T S. Effects of physical aging on long term creep of polymers and polymer matrix composites[J]. International Journal of Solids and Structures,1995,32(6-7):827-846. DOI: 10.1016/0020-7683(94)00163-Q
    [17]
    罗文波, 李其抚, 唐欣. 物理老化对PMMA准静态力学性能的影响[J]. 高分子材料科学与工程, 2009, 25(1):90-93. DOI: 10.16865/j.cnki.1000-7555.2009.01.025

    LUO Wenbo, LI Qifu, TANG Xin. Effect of physical aging on quasi-static mechanical properties of polymethyl methacrylate[J]. Polymer Materials Science & Engineering,2009,25(1):90-93(in Chinese). DOI: 10.16865/j.cnki.1000-7555.2009.01.025
    [18]
    罗文波, 唐欣, 李其抚. 物理老化对玻璃态高聚物非线性蠕变行为的影响[J]. 固体力学学报, 2008(1):104-108. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2008.01.016

    LUO Wenbo, TANG Xin, LI Qifu. Effect of physical aging on nonlinear creep behavior of glassy polymers[J]. Chinese Journal of Solid Mechanics,2008(1):104-108(in Chinese). DOI: 10.19636/j.cnki.cjsm42-1250/o3.2008.01.016
    [19]
    HU H W. Physical aging in long term creep of polymeric composite laminates[J]. Journal of Mechanics,2007,23(3):245-252. DOI: 10.1017/S1727719100001283
    [20]
    SORVARI J, HAMALAINEN J. Time integration in linear viscoelasticity—A comparative study[J]. Mechanics of Time-Dependent Materials,2010,14(3):307-328. DOI: 10.1007/s11043-010-9108-7
    [21]
    BRAUNER C, HERRMANN A S, SCHUBERT K. Analysis of the non-linear load and temperature-dependent creep behaviour of thermoplastic composite materials[J]. Journal of Thermoplastic Composite Materials,2017,30(3):302-317. DOI: 10.1177/0892705715598359
    [22]
    BARBERO E J, JULIUS M J. Time-temperature-age viscoelastic behavior of commercial polymer blends and felt filled polymers[J]. Mechanics of Advanced Materials and Structures,2004,11(3):287-300. DOI: 10.1080/15376490490427252
    [23]
    PASRICHA A, DILLARD D A, TUTTLE M E. Effect of physical aging and variable stress history on the strain response of polymeric composites[J]. Composites Science and Technology,1997,57(9-10):1271-1279. DOI: 10.1016/S0266-3538(97)00054-7
    [24]
    BRADSHAW R D, BRINSON L C. Mechanical response of linear viscoelastic composite laminates incorporating non-isothermal physical aging effects[J]. Composites Science and Technology,1999,59(9):1411-1427. DOI: 10.1016/S0266-3538(98)00179-1
    [25]
    PIERIK E R, GROUVE W J B, VAN DRONGELEN M, et al. The influence of physical ageing on the in-plane shear creep compliance of 5HS C/PPS[J]. Mechanics of Time-Dependent Materials,2021,24(2):197-220.
    [26]
    MIL-HDBK-17 Coordination Committee. Composite materials handbook. Volume 1: Polymer matrix compo-sites guidelines for characterization of structural materials[S]. Washington: MIL-HDBK-17 Coordination Committee, 2004.
    [27]
    中国国家标准化管理委员会. 塑料蠕变性能的测定 第1部分: 拉伸蠕变: GB/T 11546.1—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Plastic—Determination of creep behavior—Part 1: Tensile creep: GB/T 11546.1—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [28]
    中国国家标准化管理委员会. 定向纤维增强聚合物基复合材料拉伸性能测试方法: GB/T 3354—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People’s Republic of China. Tensile properties of orientation fiber reinforced polymer matrix composite materials: GB/ T 3354—2014[S]. Beijing: China Standards Press, 2008(in Chinese).
    [29]
    LAKES B R. Viscoelastic properties of materials[M]. Chapter 2. Cambridge: Cambridge University Press, 2009.
    [30]
    BARBERO E J. Time-temperature-age superposition principle for predicting long-term response of linear viscoelastic materials[M]. Cambridge: Woodhead Publishing, 2011: 48–69.
  • Related Articles

    [1]WANG Huailiang, OU Rui. Constitutive model of recycled brick aggregate geopolymer concrete under compression before and after elevated temperature[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3143-3153. DOI: 10.13801/j.cnki.fhclxb.20231012.001
    [2]ZHU Chao, ZHAO Wentao, YU Weihang, LIU Chao. Basic mechanical properties and constitutive model of recycled brick-concrete aggregate[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 898-910. DOI: 10.13801/j.cnki.fhclxb.20230531.004
    [3]YIN Pingbao, YU Wei, YANG Zhaohui, LUO Peiting. Strength characteristics and constitutive model of rubber-sand-polyurethane composites after freeze-thaw cycles[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3415-3427. DOI: 10.13801/j.cnki.fhclxb.20210804.003
    [4]LIU Mingxi, LIU Chengyang, LIU Wen, XU Feng, LI Zhi. Bond-slip constitutive model of bamboo scrimber-concrete interface[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2299-2307. DOI: 10.13801/j.cnki.fhclxb.20210804.002
    [5]LI Ke, ZHENG Jian, PENG Wei, ZHANG Xiao, DU Yongqiang, ZHANG Kailun. Visco-hyperelastic constitutive model of hydroxyl-terminated polybutadiene inhibitor[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3508-3516. DOI: 10.13801/j.cnki.fhclxb.20180211.002
    [6]ZHAO Qiuhong, WANG Fei, ZHU Han. Compression test on curves and constitutive model of crumb rubber concrete for structural purposes[J]. Acta Materiae Compositae Sinica, 2018, 35(8): 2222-2234. DOI: 10.13801/j.cnki.fhclxb.20171109.001
    [7]MIN Rong, YUAN Zhenyi, WANG Yongjun, CAI Yujin, SUN Bo. Numerical simulation for curing deformation of resin matrix thermosetting composite using viscoelastic constitutive model[J]. Acta Materiae Compositae Sinica, 2017, 34(10): 2254-2262. DOI: 10.13801/j.cnki.fhclxb.20170106.002
    [8]HU Hongling, GONG Youkun, PENG Xiongqi, YIN Hongling. An anisotropic hyperelastic constitutive model considering shear-tension coupling for 2-dimensional woven fabrics[J]. Acta Materiae Compositae Sinica, 2017, 34(6): 1388-1393. DOI: 10.13801/j.cnki.fhclxb.20160825.001
    [9]LIU Bintao, HUANG Hai, JIA Guanghui, ZHOU Guangdong. Development of material constitutive model for the Nomex Kevlar plain woven fabric[J]. Acta Materiae Compositae Sinica, 2011, 28(1): 194-198.
    [10]Xia Yuanming, Yuan Jianming, Yang Baochang. THEORY OF THE STATISTICAL CONSTITUTIVE MODEL OF STRAIN RATE DEPENDANCE OF THE FIBER AND ITS EXPERIMENTAL STUDY[J]. Acta Materiae Compositae Sinica, 1993, 10(2): 17-24.
  • Cited by

    Periodical cited type(1)

    1. 任翠萍,张俊丽,董银丽. 基于分数阶微分方程的复合材料粘弹性系统的非线性系统动力学研究. 自动化与仪器仪表. 2023(12): 33-37 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (688) PDF downloads (43) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return