LIAO Qiao, SU Yuanrui, YU Jiangtao, et al. Experimental study and finite element analysis of seawater sea-sand engineered cementitious composites beams[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3929-3939. DOI: 10.13801/j.cnki.fhclxb.20210911.002
Citation: LIAO Qiao, SU Yuanrui, YU Jiangtao, et al. Experimental study and finite element analysis of seawater sea-sand engineered cementitious composites beams[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3929-3939. DOI: 10.13801/j.cnki.fhclxb.20210911.002

Experimental study and finite element analysis of seawater sea-sand engineered cementitious composites beams

More Information
  • Received Date: July 27, 2021
  • Revised Date: August 20, 2021
  • Accepted Date: August 24, 2021
  • Available Online: September 12, 2021
  • To study the shear performance of seawater sea-sand engineered cementitious composites (SSE) beams, SSE material was developed. The shear tests of basalt fiber reinforced polymer (BFRP) bars reinforced SSE (BFRP/SSE) beams were carried out, and the effects of shear span ratio and stirrup ratio on the shear performance of BFRP/SSE beams were analyzed. The experimental results show that the maximum tensile strain capacity of SSE is 8.3%, and average crack width is about 0.2 mm. When BFRP/SSE beams fail in shear, no spalling failure occurs. The crack width of BFRP/SSE beams at serviceability limit state is less than 0.3 mm, which meets the requirements of relevant code. In the case of few stirrups and no stirrups, the shear capacity of beams prepared by SSE is increased by 59.32%-99.25% and 6.37%-73.68%, and stiffness also increases. Minimum stirrup ratio may not be required in the structural design of BFRP/SSE beams. Through finite element software, the influence of mechanical properties of SSE on the shear capacity of BFRP/SSE beams without web reinforcement was analyzed. The results of finite element analysis show that with increasing the compressive strength of SSE, the shear capacity increases obviously. With the increase of tensile strength of SSE, the shear capacity increases slowly. The tensile strain capacity of SSE has little effect on the shear capacity. This study can be used as a valuable reference for the applications of SSE beams in civil engineering.
  • [1]
    李田雨, 刘小艳, 张玉梅, 等. 海水海砂制备活性粉末混凝土的碳化机理[J]. 材料导报, 2020, 34(8):8042-8050. DOI: 10.11896/cldb.19010123

    LI Tianyu, LIU Xiaoyan, ZHANG Yumei, et al. Carbonization mechanism of reactive powder concrete with sea-water and sea sand[J]. Materials Reports,2020,34(8):8042-8050(in Chinese). DOI: 10.11896/cldb.19010123
    [2]
    XIAO J Z, QIANG C B, NANNI A, et al. Use of sea-sand and seawater in concrete construction: Current status and future opportunities[J]. Construction and Building Mater-ials,2017,155:1101-1111. DOI: 10.1016/j.conbuildmat.2017.08.130
    [3]
    JIANG J F, LUO J, YU J T, et al. Performance improvement of a fiber-reinforced polymer bar for a reinforced sea sand and seawater concrete beam in the serviceability limit state[J]. Sensors,2019,19(3):654. DOI: 10.3390/s19030654
    [4]
    王磊, 李威, 陈爽, 等. 海水浸泡对FRP筋-珊瑚混凝土粘结性能的影响[J]. 复合材料学报, 2018, 35(12):3458-3465.

    WANG Lei, LI Wei, CHEN Shuang, et al. Effects of sea water soaking on the bonding properties of FRP bars-coral concrete[J]. Acta Materiae Compositae Sinica,2018,35(12):3458-3465(in Chinese).
    [5]
    华云涛, 尹世平, 王璐晨. 玄武岩纤维筋海水海砂混凝土梁承载性能及使用性能影响因素研究[J]. 建筑结构学报, 2021, 42(2):166-177.

    HUA Yuntao, YIN Shiping, WANG Luchen. Study on influence factors of bearing capacity and serviceability of BFRP reinforced seawater and sea-sand concrete beams[J]. Journal of Building Structures,2021,42(2):166-177(in Chinese).
    [6]
    LI V C, WANG S X, WU C. Tensile strain-hardening behavior of PVA-ECC[J]. ACI Materials Journal,2001,98(6):483-492.
    [7]
    中华人民共和国住房和城乡建设部. 纤维增强复合材料工程应用技术规范: GB 50608—2020[S]. 北京: 中国计划出版社, 2020.

    Ministry of Housing and Urban-rural Development of the People's Republic of China. Technical code for infrastructure application of FRP composites: GB 50608—2020[S]. Beijing: China Planning Press, 2020(in Chinese).
    [8]
    LI V C, WANG S X. Flexural behaviors of glass fiber-reinforced polymer (GFRP) reinforced engineered cementitious composite beams[J]. ACI Materials Journal,2002,99(1):11-21.
    [9]
    YUAN F, PAN J L, LEUNG C K Y. Flexural behaviors of ECC and concrete/ECC composite beams reinforced with basalt fiber-reinforced polymer[J]. Journal of Composites for Construction,2013,17(5):591-602. DOI: 10.1061/(ASCE)CC.1943-5614.0000381
    [10]
    周甲佳, 姚少科, 景川, 等. FRP筋-ECC梁受弯性能[J]. 建筑科学与工程学报, 2020, 37(6):46-53.

    ZHOU Jiajia, YAO Shaoke, JING Chuan, et al. Flexural behavior of FRP-reinforced ECC beams[J]. Journal of Architecture and Civil Engineering,2020,37(6):46-53(in Chinese).
    [11]
    葛文杰, 冯肖, 季翔, 等. 纤维增强复材筋增强工程用水泥基复合材料-混凝土复合梁受弯性能试验研究[J]. 工业建筑, 2017, 47(11):23-27.

    GE Wenjie, FENG Xiao, JI Xiang, et al. Experimental research on the flexural behavior of ECC-concrete compo-site beam reinforced with FRP bars[J]. Industrial Construction,2017,47(11):23-27(in Chinese).
    [12]
    YU J T, LIU K K, XU Q F, et al. Feasibility of using seawater to produce ultra-high ductile cementitious composite for construction without steel reinforcement[J]. Structural Concrete,2019,20(2):774-785. DOI: 10.1002/suco.201800116
    [13]
    HUANG B T, YU J, WU J Q, et al. Seawater sea-sand engi-neered cementitious composites (SS-ECC) for marine and coastal applications[J]. Composites Communications,2020,20:100353. DOI: 10.1016/j.coco.2020.04.019
    [14]
    时金娜, 赵燕茹, 郝松, 等. 基于DIC技术的高温后混凝土变形性能[J]. 建筑材料学报, 2019, 22(4):584-591. DOI: 10.3969/j.issn.1007-9629.2019.04.012

    SHI Jinna, ZHAO Yanru, HAO Song, et al. Deformation behavior of concrete under uniaxial compression after high temperature by DIC technology[J]. Journal of Building Materials,2019,22(4):584-591(in Chinese). DOI: 10.3969/j.issn.1007-9629.2019.04.012
    [15]
    Japan Society of Civil Engineers. Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks[S]. Tokyo: Japan Society of Civil Engineers, 2008.
    [16]
    王义超, 余江滔, 魏琳卓, 等. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16):2665-2670. DOI: 10.11896/cldb.18070111

    WANG Yichao, YU Jiangtao, WEI Linzhuo, et al. Water-resistance property of ultra-high toughness magnesium oxychloride cement-based composite[J]. Materials Reports,2019,33(16):2665-2670(in Chinese). DOI: 10.11896/cldb.18070111
    [17]
    ZHOU J J, PAN J L, LEUNG C K Y. Mechanical behavior of fiber-reinforced engineered cementitious composites in uniaxial compression[J]. Journal of Materials in Civil Engineering,2015,27(1):04014111. DOI: 10.1061/(ASCE)MT.1943-5533.0001034
    [18]
    张锐, 孟庆利, 何畏, 等. 考虑箍筋效应的PP-ECC梁抗剪试验研究[J]. 中国公路学报, 2017, 30(12):234-241. DOI: 10.3969/j.issn.1001-7372.2017.12.025

    ZHANG Rui, MENG Qingli, HE Wei, et al. Experimental investigation on shear behavior of PP-ECC beams by consi-dering effect of stirrup[J]. China Journal of Highway and Transport,2017,30(12):234-241(in Chinese). DOI: 10.3969/j.issn.1001-7372.2017.12.025
    [19]
    TOMLINSON D, FAM A. Performance of concrete beams reinforced with basalt FRP for flexure and shear[J]. Jour-nal of Composites for Construction,2015,19:04014036. DOI: 10.1061/(ASCE)CC.1943-5614.0000491
    [20]
    OZCEBE G, ERSOY U, TANKUT T. Evaluation of minimum shear reinforcement requirements for higher strength concrete[J]. ACI Structural Journal,1999,96(3):361-368.
    [21]
    HAN T S, FEENSTRA P H, BILLINGTON S L. Simulation of highly ductile fiber-reinforced cement based composite components under cyclic loading[J]. ACI Structural Jour-nal,2003,100(6):749-757.
    [22]
    余江滔, 崔璨, 叶俊宏, 等. 基于ABAQUS模拟仿生贝壳珍珠母梁的弯曲性能[J]. 建筑材料学报, 2021, 24(6):1187-1192. DOI: 10.3969/j.issn.1007-9629.2020.01.004

    YU Jiangtao, CUI Can, YE Junhong, et al. Flexural perfor-mance of bio-inspired stacked beams: A numerical study based on ABAQUS[J]. Journal of Building Materials,2021,24(6):1187-1192(in Chinese). DOI: 10.3969/j.issn.1007-9629.2020.01.004
    [23]
    CARREIRA D J, CHU K H. Stress-strain relationship for plain concrete in compression[J]. Journal of the American Concrete Institute,1985,82(6):797-804.
    [24]
    LI L Z, CAI Z W, YU K Q, et al. Performance-based design of all-grade strain hardening cementitious composites with compressive strengths from 40 MPa to 120 MPa[J]. Cement and Concrete Composites,2019,97:202-217. DOI: 10.1016/j.cemconcomp.2019.01.001
  • Related Articles

    [1]HUANG Jian, SUN Yunyun, ZHANG Hua, XI Shanshan, WANG Jinhua, ZHANG Jiamei, HE Chunhua, LUO Tao, YU Yunhan. Preparation and adsorption mechanism of NHFO@pumice for ammonia nitrogen[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6130-6138. DOI: 10.13801/j.cnki.fhclxb.20230222.010
    [2]ZHU Gaojian, CHEN Lidong, DUAN Sheng, WU Weibing, DAI Hongqi, BIAN Huiyang. Research progress on adsorption properties of biomass materials for micro/nano plastics[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 637-648. DOI: 10.13801/j.cnki.fhclxb.20220621.001
    [3]RONG Lishan, XIA lin, ZHOU Shukui, XIONG Chaofan, DUAN Yi. Preparation of UiO-66/chitosan and its adsorption mechanism of U(VI)[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4879-4888. DOI: 10.13801/j.cnki.fhclxb.20211025.002
    [4]XU Dongying, XIE Zhiyin, YU Jing, LIU Jianying, XU Chenghua, DENG Zhiyong, ZHAI Wanting, HAO Qi. Adsorption mechanism of ofloxacin in water with "core-shell" magnetic adsorbent Mn0.6Zn0.4Fe2O4@SiO2-CeO2 capable of oxidation regeneration[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2750-2763. DOI: 10.13801/j.cnki.fhclxb.20210722.002
    [5]GUO Cheng, HAO Junjie, LI Mingyang, LONG Hongming, GAO Xiangpeng. Adsorption of Cr(Ⅵ) on porous sodium alginate/polyethyleneimine hydrogel beads and its mechanistic study[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2140-2151. DOI: 10.13801/j.cnki.fhclxb.20201015.003
    [6]CHEN Shanglong, TANG Shirong. Preparation of sodium acrylate-corncobs graft copolymers and its adsorption mechanism for Ni2+[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1939-1949. DOI: 10.13801/j.cnki.fhclxb.20200922.004
    [7]QIAO Dan, ZHANG Yongde, LUO Xuegang, ZONG Youli, ZHANG Siyue. Adsorption properties and mechanisms of potassium nickel hexacyanoterrate/carboxymethyl konjac glucomannan gel microspheres for Cs+[J]. Acta Materiae Compositae Sinica, 2018, 35(7): 1939-1951. DOI: 10.13801/j.cnki.fhclxb.20171016.001
    [8]XU Hui, CHEN Nanchun, XIE Qinglin, MA Lili, YU Qingfeng. Preparation of MnCl2-NaOH modified diatomite adsorbent and adsorption mechanism of As(V)[J]. Acta Materiae Compositae Sinica, 2017, 34(12): 2834-2840. DOI: 10.13801/j.cnki.fhclxb.20170314.003
    [9]LIU Xingqun, XIE Shuibo, ZENG Fanyong, ZHONG Yu, ZENG Taotao, LIU Yingjiu. Characteristics and mechanism of uranium (Ⅵ) adsorption by Fe(Ⅱ)-Al LDH[J]. Acta Materiae Compositae Sinica, 2017, 34(1): 183-190. DOI: 10.13801/j.cnki.fhclxb.20160308.001
    [10]XIE Shuibo, LUO Jingyang, LIU Qing, LING Hui, DUAN Yi, WANG Jinsong. Adsorption characteristics and mechanism of hydroxyethyl cellulose/sodium alginate blend films for uranium(Ⅵ)[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 268-275. DOI: 10.13801/j.cnki.fhclxb.20140519.002
  • Cited by

    Periodical cited type(3)

    1. 程超,张晨宇,裴志磊,陈正国,周飞,周金利,张辉,孙泽玉,余木火. 双环戊二烯单体预聚增粘及其碳纤维增强复合材料性能评价. 复合材料学报. 2024(01): 155-169 . 本站查看
    2. 郝励. 碳纤维对SiC陶瓷基材料的导热性能影响研究. 化学与粘合. 2024(03): 235-239 .
    3. 柯锋,王朝恩. 热压制备的碳纤维复合材料不同温度的机械性能测试. 粘接. 2023(10): 112-114 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1288) PDF downloads (97) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return