LIAO Qiao, SU Yuanrui, YU Jiangtao, et al. Experimental study and finite element analysis of seawater sea-sand engineered cementitious composites beams[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3929-3939. DOI: 10.13801/j.cnki.fhclxb.20210911.002
Citation: LIAO Qiao, SU Yuanrui, YU Jiangtao, et al. Experimental study and finite element analysis of seawater sea-sand engineered cementitious composites beams[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3929-3939. DOI: 10.13801/j.cnki.fhclxb.20210911.002

Experimental study and finite element analysis of seawater sea-sand engineered cementitious composites beams

More Information
  • Received Date: July 27, 2021
  • Revised Date: August 20, 2021
  • Accepted Date: August 24, 2021
  • Available Online: September 12, 2021
  • To study the shear performance of seawater sea-sand engineered cementitious composites (SSE) beams, SSE material was developed. The shear tests of basalt fiber reinforced polymer (BFRP) bars reinforced SSE (BFRP/SSE) beams were carried out, and the effects of shear span ratio and stirrup ratio on the shear performance of BFRP/SSE beams were analyzed. The experimental results show that the maximum tensile strain capacity of SSE is 8.3%, and average crack width is about 0.2 mm. When BFRP/SSE beams fail in shear, no spalling failure occurs. The crack width of BFRP/SSE beams at serviceability limit state is less than 0.3 mm, which meets the requirements of relevant code. In the case of few stirrups and no stirrups, the shear capacity of beams prepared by SSE is increased by 59.32%-99.25% and 6.37%-73.68%, and stiffness also increases. Minimum stirrup ratio may not be required in the structural design of BFRP/SSE beams. Through finite element software, the influence of mechanical properties of SSE on the shear capacity of BFRP/SSE beams without web reinforcement was analyzed. The results of finite element analysis show that with increasing the compressive strength of SSE, the shear capacity increases obviously. With the increase of tensile strength of SSE, the shear capacity increases slowly. The tensile strain capacity of SSE has little effect on the shear capacity. This study can be used as a valuable reference for the applications of SSE beams in civil engineering.
  • [1]
    李田雨, 刘小艳, 张玉梅, 等. 海水海砂制备活性粉末混凝土的碳化机理[J]. 材料导报, 2020, 34(8):8042-8050. DOI: 10.11896/cldb.19010123

    LI Tianyu, LIU Xiaoyan, ZHANG Yumei, et al. Carbonization mechanism of reactive powder concrete with sea-water and sea sand[J]. Materials Reports,2020,34(8):8042-8050(in Chinese). DOI: 10.11896/cldb.19010123
    [2]
    XIAO J Z, QIANG C B, NANNI A, et al. Use of sea-sand and seawater in concrete construction: Current status and future opportunities[J]. Construction and Building Mater-ials,2017,155:1101-1111. DOI: 10.1016/j.conbuildmat.2017.08.130
    [3]
    JIANG J F, LUO J, YU J T, et al. Performance improvement of a fiber-reinforced polymer bar for a reinforced sea sand and seawater concrete beam in the serviceability limit state[J]. Sensors,2019,19(3):654. DOI: 10.3390/s19030654
    [4]
    王磊, 李威, 陈爽, 等. 海水浸泡对FRP筋-珊瑚混凝土粘结性能的影响[J]. 复合材料学报, 2018, 35(12):3458-3465.

    WANG Lei, LI Wei, CHEN Shuang, et al. Effects of sea water soaking on the bonding properties of FRP bars-coral concrete[J]. Acta Materiae Compositae Sinica,2018,35(12):3458-3465(in Chinese).
    [5]
    华云涛, 尹世平, 王璐晨. 玄武岩纤维筋海水海砂混凝土梁承载性能及使用性能影响因素研究[J]. 建筑结构学报, 2021, 42(2):166-177.

    HUA Yuntao, YIN Shiping, WANG Luchen. Study on influence factors of bearing capacity and serviceability of BFRP reinforced seawater and sea-sand concrete beams[J]. Journal of Building Structures,2021,42(2):166-177(in Chinese).
    [6]
    LI V C, WANG S X, WU C. Tensile strain-hardening behavior of PVA-ECC[J]. ACI Materials Journal,2001,98(6):483-492.
    [7]
    中华人民共和国住房和城乡建设部. 纤维增强复合材料工程应用技术规范: GB 50608—2020[S]. 北京: 中国计划出版社, 2020.

    Ministry of Housing and Urban-rural Development of the People's Republic of China. Technical code for infrastructure application of FRP composites: GB 50608—2020[S]. Beijing: China Planning Press, 2020(in Chinese).
    [8]
    LI V C, WANG S X. Flexural behaviors of glass fiber-reinforced polymer (GFRP) reinforced engineered cementitious composite beams[J]. ACI Materials Journal,2002,99(1):11-21.
    [9]
    YUAN F, PAN J L, LEUNG C K Y. Flexural behaviors of ECC and concrete/ECC composite beams reinforced with basalt fiber-reinforced polymer[J]. Journal of Composites for Construction,2013,17(5):591-602. DOI: 10.1061/(ASCE)CC.1943-5614.0000381
    [10]
    周甲佳, 姚少科, 景川, 等. FRP筋-ECC梁受弯性能[J]. 建筑科学与工程学报, 2020, 37(6):46-53.

    ZHOU Jiajia, YAO Shaoke, JING Chuan, et al. Flexural behavior of FRP-reinforced ECC beams[J]. Journal of Architecture and Civil Engineering,2020,37(6):46-53(in Chinese).
    [11]
    葛文杰, 冯肖, 季翔, 等. 纤维增强复材筋增强工程用水泥基复合材料-混凝土复合梁受弯性能试验研究[J]. 工业建筑, 2017, 47(11):23-27.

    GE Wenjie, FENG Xiao, JI Xiang, et al. Experimental research on the flexural behavior of ECC-concrete compo-site beam reinforced with FRP bars[J]. Industrial Construction,2017,47(11):23-27(in Chinese).
    [12]
    YU J T, LIU K K, XU Q F, et al. Feasibility of using seawater to produce ultra-high ductile cementitious composite for construction without steel reinforcement[J]. Structural Concrete,2019,20(2):774-785. DOI: 10.1002/suco.201800116
    [13]
    HUANG B T, YU J, WU J Q, et al. Seawater sea-sand engi-neered cementitious composites (SS-ECC) for marine and coastal applications[J]. Composites Communications,2020,20:100353. DOI: 10.1016/j.coco.2020.04.019
    [14]
    时金娜, 赵燕茹, 郝松, 等. 基于DIC技术的高温后混凝土变形性能[J]. 建筑材料学报, 2019, 22(4):584-591. DOI: 10.3969/j.issn.1007-9629.2019.04.012

    SHI Jinna, ZHAO Yanru, HAO Song, et al. Deformation behavior of concrete under uniaxial compression after high temperature by DIC technology[J]. Journal of Building Materials,2019,22(4):584-591(in Chinese). DOI: 10.3969/j.issn.1007-9629.2019.04.012
    [15]
    Japan Society of Civil Engineers. Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks[S]. Tokyo: Japan Society of Civil Engineers, 2008.
    [16]
    王义超, 余江滔, 魏琳卓, 等. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16):2665-2670. DOI: 10.11896/cldb.18070111

    WANG Yichao, YU Jiangtao, WEI Linzhuo, et al. Water-resistance property of ultra-high toughness magnesium oxychloride cement-based composite[J]. Materials Reports,2019,33(16):2665-2670(in Chinese). DOI: 10.11896/cldb.18070111
    [17]
    ZHOU J J, PAN J L, LEUNG C K Y. Mechanical behavior of fiber-reinforced engineered cementitious composites in uniaxial compression[J]. Journal of Materials in Civil Engineering,2015,27(1):04014111. DOI: 10.1061/(ASCE)MT.1943-5533.0001034
    [18]
    张锐, 孟庆利, 何畏, 等. 考虑箍筋效应的PP-ECC梁抗剪试验研究[J]. 中国公路学报, 2017, 30(12):234-241. DOI: 10.3969/j.issn.1001-7372.2017.12.025

    ZHANG Rui, MENG Qingli, HE Wei, et al. Experimental investigation on shear behavior of PP-ECC beams by consi-dering effect of stirrup[J]. China Journal of Highway and Transport,2017,30(12):234-241(in Chinese). DOI: 10.3969/j.issn.1001-7372.2017.12.025
    [19]
    TOMLINSON D, FAM A. Performance of concrete beams reinforced with basalt FRP for flexure and shear[J]. Jour-nal of Composites for Construction,2015,19:04014036. DOI: 10.1061/(ASCE)CC.1943-5614.0000491
    [20]
    OZCEBE G, ERSOY U, TANKUT T. Evaluation of minimum shear reinforcement requirements for higher strength concrete[J]. ACI Structural Journal,1999,96(3):361-368.
    [21]
    HAN T S, FEENSTRA P H, BILLINGTON S L. Simulation of highly ductile fiber-reinforced cement based composite components under cyclic loading[J]. ACI Structural Jour-nal,2003,100(6):749-757.
    [22]
    余江滔, 崔璨, 叶俊宏, 等. 基于ABAQUS模拟仿生贝壳珍珠母梁的弯曲性能[J]. 建筑材料学报, 2021, 24(6):1187-1192. DOI: 10.3969/j.issn.1007-9629.2020.01.004

    YU Jiangtao, CUI Can, YE Junhong, et al. Flexural perfor-mance of bio-inspired stacked beams: A numerical study based on ABAQUS[J]. Journal of Building Materials,2021,24(6):1187-1192(in Chinese). DOI: 10.3969/j.issn.1007-9629.2020.01.004
    [23]
    CARREIRA D J, CHU K H. Stress-strain relationship for plain concrete in compression[J]. Journal of the American Concrete Institute,1985,82(6):797-804.
    [24]
    LI L Z, CAI Z W, YU K Q, et al. Performance-based design of all-grade strain hardening cementitious composites with compressive strengths from 40 MPa to 120 MPa[J]. Cement and Concrete Composites,2019,97:202-217. DOI: 10.1016/j.cemconcomp.2019.01.001
  • Related Articles

    [1]Dong Zehua, Wang Kaichuan, Jingchuan, Zhao Jun, Zhou Jiajia. Fatigue life of high strength strain hardening cementitious composite under uniaxial compression[J]. Acta Materiae Compositae Sinica.
    [2]ZHANG Zhengwei, LI Hui, LI Zelin, SUN Guowei, CUI Hongbo, DENG Yichen. Finite element modeling analysis and verification of fiber-reinforced origami sandwich plates with shear-hardening materials under high velocity impact[J]. Acta Materiae Compositae Sinica.
    [3]BAO Jiuwen, KONG Lingyan, ZHANG Xinyu, ZHANG Peng, QIN Ling, GUO Weina. Mesoscale numerical analysis of chloride ingress behavior of strain hardening cement-based composites[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2137-2147. DOI: 10.13801/j.cnki.fhclxb.20230824.001
    [4]WU Chang, WANG Xinru, XU Mingwen, YAO Jie, CHEN Mingkang, JIN Chenhua. Numerical simulation of the tensile strain hardening and multiple cracking behavior of ECC based on beam theory[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5216-5227. DOI: 10.13801/j.cnki.fhclxb.20220215.003
    [5]HUO Yanlin, SUN Huayang, LIU Tian’an, HE Yixin, CHEN Zhitao, LV Chengbo, YANG Yingzi. Flexural impact behavior of hybrid fiber-reinforced strain hardening cementitious composites[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5086-5097. DOI: 10.13801/j.cnki.fhclxb.20220623.005
    [6]GAO Shizhuang, XUE Shanbin, ZHANG Peng, LI Chunyun, WANG Junjie. Effect of high temperature environment on water absorption and microstructure evolution of strain hardening cementitious composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4778-4787. DOI: 10.13801/j.cnki.fhclxb.20220104.002
    [7]ZHANG Cong, XIA Chaofan, YUAN Zhen, LI Zhihua. Tension constitutive relationship of hybrid fiber reinforced strain hardening cementitous composites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1754-1762. DOI: 10.13801/j.cnki.fhclxb.20191114.001
    [8]ZHANG Cong, YU Zhihui, HAN Shicheng, HUA Yuan. Compression constitutive relation of hybrid fiber reinforced strain hardening cementitous composites[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1221-1226. DOI: 10.13801/j.cnki.fhclxb.20190823.002
    [9]Pseudo strain hardening model of ultra high performance cementitious composites under flexural loading[J]. Acta Materiae Compositae Sinica, 2008, 25(2): 129-134.
    [10]Guo Yajun. FINITE ELEMENT ANALYSIS OF STRAIN-ENERGY-RELEASE RATE FOR DOUBLE-CANTILEVER BEAM SPECIMEN[J]. Acta Materiae Compositae Sinica, 1994, 11(3): 76-81.
  • Cited by

    Periodical cited type(3)

    1. 李彦宵,于本田,张占旭,吴明星,谢超. 河砂粒径与纤维类型对ECC力学性能的影响. 混凝土与水泥制品. 2024(02): 51-55+60 .
    2. 周甲佳,温金鑫,景川,赵军. CFRP筋增强ECC梁弯曲性能试验研究. 复合材料学报. 2023(02): 978-989 . 本站查看
    3. 林培轩,胡苗. 海水海砂对水泥基材料的性能影响分析. 中国建筑金属结构. 2023(01): 99-101 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (1286) PDF downloads (97) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return