Experimental study and finite element analysis of seawater sea-sand engineered cementitious composites beams
-
Abstract
To study the shear performance of seawater sea-sand engineered cementitious composites (SSE) beams, SSE material was developed. The shear tests of basalt fiber reinforced polymer (BFRP) bars reinforced SSE (BFRP/SSE) beams were carried out, and the effects of shear span ratio and stirrup ratio on the shear performance of BFRP/SSE beams were analyzed. The experimental results show that the maximum tensile strain capacity of SSE is 8.3%, and average crack width is about 0.2 mm. When BFRP/SSE beams fail in shear, no spalling failure occurs. The crack width of BFRP/SSE beams at serviceability limit state is less than 0.3 mm, which meets the requirements of relevant code. In the case of few stirrups and no stirrups, the shear capacity of beams prepared by SSE is increased by 59.32%-99.25% and 6.37%-73.68%, and stiffness also increases. Minimum stirrup ratio may not be required in the structural design of BFRP/SSE beams. Through finite element software, the influence of mechanical properties of SSE on the shear capacity of BFRP/SSE beams without web reinforcement was analyzed. The results of finite element analysis show that with increasing the compressive strength of SSE, the shear capacity increases obviously. With the increase of tensile strength of SSE, the shear capacity increases slowly. The tensile strain capacity of SSE has little effect on the shear capacity. This study can be used as a valuable reference for the applications of SSE beams in civil engineering.
-
-