Volume 39 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
ZHAO Jinyun, LIU Ruilai, HU Jiapeng, et al. Fabrication of polycaprolactone-cellulose acetate-poly(L-lactic acid) three-dimensional micro-nanofibrous porous scaffold composites and its bio-mineralization activity[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2918-2929. doi: 10.13801/j.cnki.fhclxb.20210906.007
Citation: ZHAO Jinyun, LIU Ruilai, HU Jiapeng, et al. Fabrication of polycaprolactone-cellulose acetate-poly(L-lactic acid) three-dimensional micro-nanofibrous porous scaffold composites and its bio-mineralization activity[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2918-2929. doi: 10.13801/j.cnki.fhclxb.20210906.007

Fabrication of polycaprolactone-cellulose acetate-poly(L-lactic acid) three-dimensional micro-nanofibrous porous scaffold composites and its bio-mineralization activity

doi: 10.13801/j.cnki.fhclxb.20210906.007
  • Received Date: 2021-06-23
  • Accepted Date: 2021-08-14
  • Rev Recd Date: 2021-08-11
  • Available Online: 2021-09-07
  • Publish Date: 2022-06-01
  • 3D nanofiber scaffold composites in bone tissue engineering are promising. Poly(L-lactic acid)-polycaprolactone-cellulose acetate 3D composite micro-nanofibrous porous scaffolds were prepared by low-temperature phase separation, without the assistance of additives. The effects of PCL-CA-PLLA ratio, quenching time, polymer concentration and quenching temperature on the morphology of fibrous scaffolds were investigated by SEM. The diameter of PCL-CA-PLLA (1∶1∶8) is (276±121) nm, which is similar to the size of the extracellular matrix (50-500 nm), and the porosity and specific surface area are 95.12% and 54.18 m2/g, respectively. It is indicated that PCL-CA-PLLA 3D micro-nanofibrous porous scaffold composites are 3D porous materials with high porosity and large specific surface area. Compared with pure PLLA fibrous scaffolds, the mechanical strength and hydrophilicity of PCL-CA-PLLA 3D micro-nanofibrous porous scaffold composites are improved. PLLA-PCL-CA 3D micro-nanofibrous are expected to be ideal tissue engineering scaffold materials.

     

  • loading
  • [1]
    FENG J, HUANG Z, DONG Y. Preparation of ice microspheres and their application in the preparation of porous poly (L-lactic acid)(PLLA) scaffolds[J]. Journal of Mater-ials Science,2019,54(4):3661-3670. doi: 10.1007/s10853-018-3086-6
    [2]
    廖欣宇, 王福科, 王国梁. 骨组织工程支架的进展与挑战[J]. 中国组织工程研究, 2021, 25(28):4553-4560.

    LIAO Xinyu, WANG Fuke, WANG Guoliang. Progress and challenges of bone tissue engineering scaffolds[J]. Chinese Journal of Tissue Engineering Research,2021,25(28):4553-4560(in Chinese).
    [3]
    AKBARZADEH R, YOUSEFI A M. Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials,2014,102(6):1304-1315. doi: 10.1002/jbm.b.33101
    [4]
    SMITH L A, LIU X, MA P X. Tissue engineering with nano-fibrous scaffolds[J]. Soft Matter,2008,4(11):2144-2149. doi: 10.1039/b807088c
    [5]
    WU S, LIU X, YEUNG K W K, et al. Biomimetic porous scaffolds for bone tissue engineering[J]. Materials Science & Engineering R Reports,2014,80:1-36.
    [6]
    TANG D, TARE R S, YANG L Y, et al. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration[J]. Biomaterials,2016,83:363-382. doi: 10.1016/j.biomaterials.2016.01.024
    [7]
    RUSHA A, MADHUMITHA A, PEARL A, et al. Biomaterials and cells for cardiac tissue engineering: Current choices[J]. Materials Science & Engineering C,2017,79:950-957.
    [8]
    ROSETI L, PARISI V, PETRETTA M, et al. Scaffolds for bone tissue engineering: State of the art and new perspectives[J]. Materials Science & Engineering,2017,78(9):1246-1262.
    [9]
    SILL T J. Electrospinnning : Applications in drug delivery and tissue engineering[J]. Biomaterials,2008,29(13):1989-2006. doi: 10.1016/j.biomaterials.2008.01.011
    [10]
    LI J, CHEN Y, MAK A, et al. A one-step method to fabricate PLLA scaffolds with deposition of bioactive hydroxyapatite and collagen using ice-based microporogens[J]. Acta Biomaterialia,2010,6(6):2013-2019. doi: 10.1016/j.actbio.2009.12.008
    [11]
    LIN L, HU Q, HUANG X, et al. Design and fabrication of bone tissue engineering scaffolds via rapid prototyping and CAD[J]. Journal of Rare Earths,2007,25(2):379-383.
    [12]
    RAEISDASTEH H V, DAVARAN S, RAMAZANI A, et al. Design and fabrication of porous biodegradable scaffolds: A strategy for tissue engineering[J]. Journal of Biomaterials Science: Polymer Edtion,2017,28(16):1-47.
    [13]
    刘淑琼, 吴芳芳, 刘瑞来. 聚乳酸/聚乙烯吡咯烷酮纳米纤维复合支架的制备及性能[J]. 高分子材料科学与工程, 2015(6):172-176.

    LIU Shuqiong, WU Fangfang, LIU Ruilai. Preparation and property of polylactide/polyvinylpyrrolidone composite nanofibrous scaffolds[J]. Polymer Materials Science and Engineering,2015(6):172-176(in Chinese).
    [14]
    CONOSCENTI G, SCHNEIDER T, STOELZEL K, et al. PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on pore size[J]. Materials Science & Engineering C,2017,80(3):449-459.
    [15]
    HOKMADAD V R, DAVARAN S, RAMZANI A, et al. Design and fabrication of porous biodegradable scaffolds: A strategy for tissue engineering[J]. Journal of Biomaterials Science: Polymer Edition,2017,28(16):1797-1825. doi: 10.1080/09205063.2017.1354674
    [16]
    ONDER O C, YILGOR E, YILGOR I. Preparation of monolithic polycaprolactone foams with controlled morph-ology[J]. Polymer,2018,136(4):166-178.
    [17]
    UZ M, BUYUKOZ M, SHARMA A D, et al. Gelatin-based 3D conduits for transdifferentiation of mesenchymal stem cells into Schwann cell-like phenotypes[J]. Acta Biomater-ialia,2017,53(4):293-306.
    [18]
    WANG W, MIAO Y, ZHOU X, et al. Local delivery of BMP-2 from poly(lactic-co-glycolic acid) microspheres incorporated into porous nanofibrous scaffold for bone tissue regeneration[J]. Journal of Biomedical Nanotechnology,2017,13(11):1446-1456. doi: 10.1166/jbn.2017.2445
    [19]
    KIM G M, LE K H T, GIANITELLI S M, et al. Electrospinning of PCL/PVP blends for tissue engineering scaffolds[J]. Journal of Materials Science: Materials in Medicine,2013,24(6):1425-1442. doi: 10.1007/s10856-013-4893-6
    [20]
    KOUYA T, TADA S I, MINBU H, et al. Microporous membranes of PLLA/PCL blends for periosteal tissue scaffold[J]. Materials Letters,2013,95(3):103-106.
    [21]
    LIU S, ZHENG Y, HU J, et al. Fabrication and characterization of polylactic acid/polycaprolactone composite macroporous micro-nanofiber scaffolds by phase separation[J]. New Journal of Chemistry,2020,44(40):17382-17390. doi: 10.1039/D0NJ03176C
    [22]
    HOU J Z, SUN X P, ZHANG W X, et al. Preparation and characterization of electrospun fibers based on poly(L-lactic acid)/cellulose acetate[J]. Chinese Journal of Polymer Science,2012,30(6):916-922. doi: 10.1007/s10118-012-1191-6
    [23]
    LIU R L, LIU J S, LIU H Q. Fabrication of PLLA/CA compo-sites porous ultrafine fibers[J]. Acta Polymerica Sinica,2013(10):1312-1318.
    [24]
    LIU R L, LI K N, LIU M, et al. Free poly(L-lactic acid) spherulites grown from thermally induced phase separation and crystallization kinetics[J]. Journal of Polymer Science Part B: Polymer Physics,2014,52(22):1476-1489. doi: 10.1002/polb.23587
    [25]
    HE L M, ZHANG Y Q. Fabrication and characterization of poly (L-lactic acid) 3D nanofibrous scaffolds with controlled architecture by liquid-liquid phase separation from a ternary polymer-solvent system[J]. Polymer,2009,50(16):4128-4138. doi: 10.1016/j.polymer.2009.06.025
    [26]
    GUARINO V, TADDEI P, FOGGIA M D, et al. The influence of hydroxyapatite particles on in vitro degradation behavior of poly ɛ-caprolactone-based composite scaffolds[J]. Tissue Engineering Part A,2009,15(11):3655-3668. doi: 10.1089/ten.tea.2008.0543
    [27]
    CUNETY T A. Synthesis of biomimetic Ca-hydroxyapatite powders at 37℃ in synthetic body fluids[J]. Biomaterials,2000,21(14):1429-1438. doi: 10.1016/S0142-9612(00)00019-3
    [28]
    刘瑞来. 聚乳酸纳米纤维球晶多孔材料的制备及其结构性能研究[D]. 福州: 福建师范大学, 2015.

    LIU Ruilai. Fabrication, properties and application of porous materials based on PLLA spherulites composed of nano-fibers[D]. Fuzhou: Fujian Normal University, 2015(in Chinese).
    [29]
    SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure and Applied Chemistry,1985,57(4):603-619. doi: 10.1351/pac198557040603
    [30]
    刘淑琼, 肖秀峰. PVP/PCL纳米纤维复合支架的生物活性[J]. 材料研究学报, 2014, 28(10):769-774. doi: 10.11901/1005.3093.2014.213

    LIU Shuqiong, XIAO Xiufeng. Cytocompatibility of PCL/PVP composite nanofibrous scaffolds[J]. Chinese Journal of Materials Research,2014,28(10):769-774(in Chinese). doi: 10.11901/1005.3093.2014.213
    [31]
    LIU S, ZHENG Y, LIU R, et al. Preparation and characterization of a novel polylactic acid/hydroxyapatite composite scaffold with biomimetic micro-nanofibrous porous structure[J]. Journal of Materials Science: Materials in Medicine,2020,31(8):1-11.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (990) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return