Volume 39 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
SU Jun, QIAN Weimin. Effect of ultra-low temperature on flexural behavior of ultra-high toughness cementitious composites[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2844-2854. doi: 10.13801/j.cnki.fhclxb.20210823.001
Citation: SU Jun, QIAN Weimin. Effect of ultra-low temperature on flexural behavior of ultra-high toughness cementitious composites[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2844-2854. doi: 10.13801/j.cnki.fhclxb.20210823.001

Effect of ultra-low temperature on flexural behavior of ultra-high toughness cementitious composites

doi: 10.13801/j.cnki.fhclxb.20210823.001
  • Received Date: 2021-06-25
  • Accepted Date: 2021-08-12
  • Rev Recd Date: 2021-08-04
  • Available Online: 2021-08-26
  • Publish Date: 2022-06-01
  • As a new type of composite material with good mechanical properties and durability, the flexural toughness of ultra-high toughness cementitious composites (UHTCC) is an important indicator to evaluate its mechanical properties. To explore the bending performance of UHTCC materials under an ultra-low temperature environment, five groups of UHTCC materials with different fiber contents were designed. After cryogenic treatment, four-point bending tests were carried out, and the equivalent strength was analyzed. A toughness evaluation method suitable for ultra-low temperature was proposed, which provided the theoretical basis and technical support for the wide application of UHTCC in the field of ultra-low temperature. The results show that the flexural strength of UHTCC increases significantly after ultra-low temperatures. When the temperature decreases to −160℃, the flexural strength of UHTCC increases by 67.67%, but it shows obvious brittleness. In an ultra-low temperature environment, the strength and toughness of UHTCC with 1.5vol% volume fraction are the best, but the performance of UHTCC is slightly reduced after exceeding the optimal volume fraction.

     

  • loading
  • [1]
    LIU X M, ZHANG M H, CHIA K S, et al. Mechanical properties of ultra-lightweight cement composite at low tempera-tures of 0 to −60℃[J]. Cement and Concrete Composites,2016,73:289-298. doi: 10.1016/j.cemconcomp.2016.05.014
    [2]
    DAHMANI L, KHENANE A, KACI S. The behavior of the reinforced concrete at cryogenic temperatures[J]. Cryogenics,2007,47(9):517-525.
    [3]
    GERWICK B. Eighth international congress of the FIP[J]. Engineering Structures, 1978, 1(1): 55.
    [4]
    程旭东, 朱兴吉. LNG储罐外墙温度应力分析及预应力筋设计[J]. 石油学报, 2012, 33(3):499-505.

    CHENG X D, ZHU X J. Thermal stress analysis and prestressed reinforcement design of external wall of LNG storage tank[J]. Petroleum Journal,2012,33(3):499-505(in Chinese).
    [5]
    吴中伟. 纤维增强──水泥基材料的未来[J]. 混凝土与水泥制品, 1999, 1:3-4.

    WU Z W. Fiber reinforcement-future of cement based materials[J]. Concrete and Cement Products,1999,1:3-4(in Chinese).
    [6]
    李贺东, 徐世烺. 超高韧性水泥基复合材料弯曲性能及韧性评价方法[J]. 土木工程学报, 2010, 43(3):32-39.

    LI H D, XU S L. The evaluation method of flexural prop-erties and toughness of ultra-high toughness cementitious composites[J]. Journal of Civil Engineering,2010,43(3):32-39(in Chinese).
    [7]
    徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008(6):45-60. doi: 10.3321/j.issn:1000-131X.2008.06.008

    XU S L, LI H D. Research progress and engineering application of ultra-high toughness cementitious composites[J]. Journal of Civil Engineering,2008(6):45-60(in Chinese). doi: 10.3321/j.issn:1000-131X.2008.06.008
    [8]
    张秀芳, 徐世烺, 侯利军. 采用超高韧性水泥基复合材料提高钢筋混凝土梁弯曲抗裂性能研究(II): 试验研究[J]. 土木工程学报, 2009, 42(10):53-66. doi: 10.3321/j.issn:1000-131X.2009.10.008

    ZHANG X F, XU S L, HOU L J. Using ultra-high toughness cementitious composites to improve the flexural crack re-sistance of reinforced concrete beams (II): Experimental study[J]. Journal of Civil Engineering,2009,42(10):53-66(in Chinese). doi: 10.3321/j.issn:1000-131X.2009.10.008
    [9]
    MIURA T. The properties of concrete at very low tempera-tures[J]. Materials and Structures,1989,22(4):243-254. doi: 10.1007/BF02472556
    [10]
    ELHACHA R, GREEN M F, WIGHT R G. Flexural behaviour of concrete beams strengthened with prestressed carbon fibre reinforced polymer sheets subjected to sustained loading and low temperature[J]. Canadian Journal of Civil Engineering,2004,31(2):239-252. doi: 10.1139/l03-091
    [11]
    XIE J, LI X M, WU H H. Experimental study on the axial-compression performance of concrete at cryogenic tem-peratures[J]. Construction and Building Materials,2014,72:380-388. doi: 10.1016/j.conbuildmat.2014.09.033
    [12]
    DANILLE D, HOULT N A, GREEN M F. Effects of varying temperature on the performance of reinforced concrete[J]. Springer Netherlands,2015,48(4):1109-1123.
    [13]
    YAN J B, XIE J. Behaviours of reinforced concrete beams under low temperatures[J]. Construction and Building Materials,2017,141:410-425. doi: 10.1016/j.conbuildmat.2017.03.029
    [14]
    TOGNON G. Behavior of mortars and concretes in the temperature range from 20℃ to −196℃[R]. 5th International Congress on the Chemistry of Cement, 1969: 229-249.
    [15]
    中国工程建设协会标准. 纤维混凝土试验方法标准: CECS 13—2010[S]. 北京: 计划出版社, 2010.

    China Association for Engineering Construction Standardization. Fiber reinforced concrete test method standard: CECS 13—2010[S]. Beijing: Planning Press, 2010(in Chinese).
    [16]
    中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012[S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing Urban-Rural Development of the People's Republic of China. Concrete structure test method standard: GB/T 50152—2012[S]. Beijing: China Architecture & Building Press, 2012(in Chinese)
    [17]
    LEE G C, SHIH T S, CHANG K C. Mechanical properties of concrete at low temperature[J]. Journal of Cold Regions Engineering,1988,2(1):13-24. doi: 10.1061/(ASCE)0887-381X(1988)2:1(13)
    [18]
    YAMANA S, KASAMI H, OKUNO T. Properties of concrete at very low temperatures[J]. ACI Special Publication,1978,55:1-12.
    [19]
    CAI X P, YANG W C, YUAN J, et al. Mechanics properties of concrete at low temperature[J]. Advanced Materials Research,2011,1278:389-393.
    [20]
    史占崇, 苏庆田, 邵长宇, 等. 粗骨料UHPC的基本力学性能及弯曲韧性评价方法[J]. 土木工程学报, 2020, 53(12):86-97.

    SHI Z C, SU Q T, SHAO C Y, et al. The basic mechanical properties and flexural toughness evaluation method of coarse aggregate UHPC[J]. Journal of Civil Engineering,2020,53(12):86-97(in Chinese).
    [21]
    American Concrete Institute Committee. Measurement of properties of fiber reinforced concrete: 544.2R—89[S]. Dtroit: American Concrete Institute, 2002.
    [22]
    SKAPSKI A, BILLUPS R, ROONEY A. Capillary cone method for determination of surface tension of solids[J]. Jour-nal of Chemical Physics, 1957, 26(5): 1350-1351.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (749) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return