Volume 39 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
DU Jiaqi, CHEN Junlin, JI Jiashuai, et al. Preparation and electrochemical performance of Co Prussian blue analogue/ multi-walled carbon nanotubes nanocomposite for supercapacitors[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2724-2733. doi: 10.13801/j.cnki.fhclxb.20210805.002
Citation: DU Jiaqi, CHEN Junlin, JI Jiashuai, et al. Preparation and electrochemical performance of Co Prussian blue analogue/ multi-walled carbon nanotubes nanocomposite for supercapacitors[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2724-2733. doi: 10.13801/j.cnki.fhclxb.20210805.002

Preparation and electrochemical performance of Co Prussian blue analogue/ multi-walled carbon nanotubes nanocomposite for supercapacitors

doi: 10.13801/j.cnki.fhclxb.20210805.002
  • Received Date: 2021-06-11
  • Accepted Date: 2021-07-24
  • Rev Recd Date: 2021-07-07
  • Available Online: 2021-08-05
  • Publish Date: 2022-06-01
  • Co Prussian blue analogue (CoPBA) has attracted much attentions as a promising anode material of supercapacitors due to its high capacity and long cycle life. But CoPBA suffers from poor electrical conductivity, leading to unsatisfied rate performance. A nanocomposite of Co Prussian blue analogue/multi-walled carbon nano-tubes (CoPBA/MWCNT) composite was synthesized using ZIF-67 as a precursor. The structure and morphology of CoPBA/MWCNT were characterized by XRD, SEM and TEM. In a three-electrode system, the specific capacitance of the CoPBA/MWCNT electrode reaches up to 312 F·g−1 at a current density of 1 A·g−1. The fabrication of CoPBA/MWCNT is beneficial for improving electronic conductivity and mechanical stability, resulting in high electrochemical performance. An asymmetric supercapacitor cell is assembled with CoPBA/MWCNT as cathode and activated carbon (AC) as anode. Its capacity retention rate is 83.1% after 5000 cycles, exhibiting excellent cycling stability.

     

  • loading
  • [1]
    肖谧, 宿玉鹏, 杜伯学. 超级电容器研究进展[J]. 电子元件与材料, 2019, 38(9):1-12.

    XIAO Mi, SU Yupeng, DU Boxue. Research progress of supercapacitors[J]. Electronic Components and Materials,2019,38(9):1-12(in Chinese).
    [2]
    胡方圆, 刘冬明, 李佳乐, 等. 高性能聚合物在新型储能领域的应用进展[J]. 中国材料进展, 2019, 38(10):990-998.

    HU Fangyuan, LIU Dongming, LI Jiale, et al. Advances in application of high- performance polymers in the new energy storage field[J]. Materials China,2019,38(10):990-998(in Chinese).
    [3]
    MATHIS T S, KURRA N, WANG X, et al. Energy storage data reporting in perspective-guidelines for interpreting the performance of electrochemical energy storage systems[J]. Advanced Energy Materials,2019,9(39):1902007. doi: 10.1002/aenm.201902007
    [4]
    WANG J, ZHUANG S, LIU Y. Metal hexacyanoferrates-based adsorbents for cesium removal[J]. Coordination Chemistry Reviews,2018,374:430-438. doi: 10.1016/j.ccr.2018.07.014
    [5]
    POONAM, SHARMA K, ARORA A, et al. Review of supercapacitors: Materials and devices[J]. Journal of Energy Storage,2019,21:801-825. doi: 10.1016/j.est.2019.01.010
    [6]
    王攀, 刘羽熙, 王永贵. PPy/MWNTs/GO复合材料的制备与电化学性能研究[J]. 材料科学与工艺, 2016, 24(3):92-96.

    WANG Pan, LIU Yuxi, WANG Yonggui. Preparation and electrochemical performance of PPy/MWNTs/GO compo-sites[J]. Materials Science & Technology,2016,24(3):92-96(in Chinese).
    [7]
    刘连梅, 赵健伟, 陈超. 聚苯胺-石墨烯/聚酰亚胺复合导电纱的制备及其超电容特性[J]. 复合材料学报, 2020, 37(4):786-793.

    LIU Lianmei, ZHAO Jianwei, CHEN Chao. Preparation and supercapacitance characteristics of polyaniline-graphene/polyimide composite conductive yarn[J]. Acta Materiae Compositae Sinica,2020,37(4):786-793(in Chinese).
    [8]
    张政, 刘洪达, 宋朝霞, 等. 聚苯胺包覆CoFe类普鲁士蓝复合材料的超电容性能[J]. 复合材料学报, 2020, 37(3):731-739.

    ZHANG Zheng, LIU Hongda, SONG Zhaoxia, et al. Supercapacitive performance of polyaniline coated CoFe Prussian blue analogue composite[J]. Acta Materiae Compositae Sinica,2020,37(3):731-739(in Chinese).
    [9]
    NAI J, LOU X W. Hollow structures based on prussian blue and its analogs for electrochemical energy storage and conversion[J]. Advanced Materials,2019,31(38):1706825. doi: 10.1002/adma.201706825
    [10]
    DASSANAYAKE A C, WICKRAMARATNE N P, HOSSAIN M A, et al. Prussian blue-assisted one-pot synthesis of nitrogen-doped mesoporous graphitic carbon spheres for supercapacitors[J]. Journal of Materials Chemistry A,2019,7(38):22092-22102. doi: 10.1039/C9TA08454A
    [11]
    CHEN J, WEI L, MAHMOOD A, et al. Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion[J]. Energy Storage Materials,2020,25:585-612. doi: 10.1016/j.ensm.2019.09.024
    [12]
    LISOWSKA-OLEKSIAK A, NOWAK A P. Metal hexacyanoferrate network synthesized inside polymer matrix for electrochemical capacitors[J]. Journal of Power Sources,2007,173(2):829-836. doi: 10.1016/j.jpowsour.2007.05.046
    [13]
    ZHAO F, WANG Y, XU X, et al. Cobalt hexacyanoferrate nanoparticles as a high-rate and ultra-stable supercapacitor electrode material[J]. ACS Applied Materials & Interfaces,2014,6(14):11007-11012. doi: 10.1021/am503375h
    [14]
    WANG J G, ZHANG Z, ZHANG X, et al. Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors[J]. Nano Energy,2017,39:647-653. doi: 10.1016/j.nanoen.2017.07.055
    [15]
    SONG Z, LIU W, ZHOU Q, et al. Cobalt hexacyanoferrate/ MnO2 nanocomposite for asymmetrical supercapacitors with enhanced electrochemical performance and its charge storage mechanism[J]. Journal of Power Sources,2020,465:228266. doi: 10.1016/j.jpowsour.2020.228266
    [16]
    RAWOOL C R, PUNDE N S, RAJPUROHIT A S, et al. High energy density supercapacitive material based on a ternary hybrid nanocomposite of cobalt hexacyanoferrate/carbon nanofibers/polypyrrole[J]. Electrochimica Acta,2018,268:411-423. doi: 10.1016/j.electacta.2018.02.111
    [17]
    ZHANG X, TAO L, HE P, et al. A novel cobalt hexacyanoferrate/multi-walled carbon nanotubes nanocomposite: Spontaneous assembly synthesis and application as electrode materials with significantly improved capacitance for supercapacitors[J]. Electrochimica Acta,2018,259:793-802. doi: 10.1016/j.electacta.2017.11.007
    [18]
    REN L, WANG J G, LIU H, et al. Metal-organic-framework-derived hollow polyhedrons of prussian blue analogues for high power grid-scale energy storage[J]. Electrochimica Acta,2019,321:134671. doi: 10.1016/j.electacta.2019.134671
    [19]
    DENG L, HAO Z, WANG J, et al. Preparation and capacitance of graphene/multiwall carbon nanotubes/MnO2 hybrid material for high-performance asymmetrical electrochemical capacitor[J]. Electrochimica Acta,2013,89:191-198. doi: 10.1016/j.electacta.2012.10.106
    [20]
    KHAN A, ALI M, ILYAS A, et al. ZIF-67 filled PDMS mixed matrix membranes for recovery of ethanol via pervaporation[J]. Separation and Purification Technology,2018,206:50-58.
    [21]
    KETTLE S F A, DIANA E, MARCHESE E M C, et al. The vibrational spectra of the cyanide ligand revisited: The ν(CN) infrared and Raman spectroscopy of Prussian blue and its analogues[J]. Journal of Raman Spectroscopy,2011,42(11):2006-2014. doi: 10.1002/jrs.2944
    [22]
    YIN X, LI H, WANG H, et al. Self-templating synthesis of cobalt hexacyanoferrate hollow structures with superior performance for Na-ion hybrid supercapacitors[J]. ACS Applied Materials & Interfaces,2018,10(35):29496-29504.
    [23]
    LEE P K, NIA P M, WOI P M. Self-assembled Prussian blue-polypyrrole nanocomposites for energy storage application[J]. Journal of Applied Electrochemistry,2019,49(6):631-638. doi: 10.1007/s10800-019-01310-5
    [24]
    SONG Z, LIU W, YUAN Q, et al. Microporous/mesoporous cobalt hexacyanoferrate nanocubes for long-cycle life asymmetric supercapacitors[J]. Journal of Materials Science: Materials in Electronics,2018,29(17):14897-14905. doi: 10.1007/s10854-018-9628-5
    [25]
    LU K, SONG B, GAO X, et al. High-energy cobalt hexacyanoferrate and carbon micro-spheres aqueous sodium-ion capacitors[J]. Journal of Power Sources,2016,303:347-353. doi: 10.1016/j.jpowsour.2015.11.031
    [26]
    ZHANG D, ZHANG J, YANG Z, et al. Nickel hexacyanoferrate/carbon composite as a high-rate and long-life cathode material for aqueous hybrid energy storage[J]. Chemical Communications,2017,53(76):10556-10559. doi: 10.1039/C7CC04914E
    [27]
    KRISHNAMOORTHY K, PAZHAMALAI P, SAHOO S, et al. A high-energy aqueous sodium-ion capacitor with nickel hexacyanoferrate and graphene electrodes[J]. ChemElectroChem,2017,4(12):1-8.
    [28]
    MAIER M A, SURESH BABU R, SAMPAIO D M, et al. Binder-free polyaniline interconnected metal hexacyanoferrates nanocomposites (Metal=Ni, Co) on carbon fibers for flexible supercapacitors[J]. Journal of Materials Science: Materials in Electronics,2017,28(23):17405-17413. doi: 10.1007/s10854-017-7674-z
    [29]
    YAO H, ZHANG F, ZHANG G, et al. A new hexacyanoferrate nanosheet array converted from copper oxide as a high-performance binder-free energy storage electrode[J]. Electrochimica Acta,2019,294:286-296. doi: 10.1016/j.electacta.2018.10.056
    [30]
    SENTHILKUMAR S T, KIM J, WANG Y, et al. Flexible and wearable fiber shaped high voltage supercapacitors based on copper hexacyanoferrate and porous carbon coated carbon fiber electrodes[J]. Journal of Materials Chemistry A,2016,4(13):4934-4940. doi: 10.1039/C6TA00093B
    [31]
    元宝. 石墨烯/铁氰化镍电极材料及其非对称超级电容器的组装[D]. 哈尔滨: 哈尔滨工程大学, 2017.

    YUAN Bao. The assembly of asymmetric supercapacitor based on graphene/nickel hexacyanoferrate composites[D]. Harbin: Harbin Engineering University, 2017(in Chinese).
    [32]
    LAFORGUE P, SIMON P, FAUVARQUE J F, et al. Activated carbon/conducting polymer hybrid supercapacitors[J]. Journal of the Electrochemical Society,2003,150(5):A645-A651. doi: 10.1149/1.1566411
    [33]
    XU K, ZOU R, LI W, et al. Design and synthesis of 3D interconnected mesoporous NiCo2O4@CoxNi1-x(OH)2 core-shell nanosheet arrays with large areal capacitance and high rate performance for supercapacitors[J]. Journal of Materials Chemistry A,2014,2(26):10090-10097. doi: 10.1039/c4ta01489h
    [34]
    LIU W, LI X, ZHU M, et al. High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel[J]. Journal of Power Sources,2015,282:179-186. doi: 10.1016/j.jpowsour.2015.02.047
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (1199) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return