Volume 39 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
TIAN Li, LIU Qiang, WANG Huifeng, et al. Synthesis, characterization and electric conductivity of novel poly (divinyldioxythiophene@indium p-phthalic semi-conductor composites[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2661-2667. doi: 10.13801/j.cnki.fhclxb.20210728.002
Citation: TIAN Li, LIU Qiang, WANG Huifeng, et al. Synthesis, characterization and electric conductivity of novel poly (divinyldioxythiophene@indium p-phthalic semi-conductor composites[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2661-2667. doi: 10.13801/j.cnki.fhclxb.20210728.002

Synthesis, characterization and electric conductivity of novel poly (divinyldioxythiophene@indium p-phthalic semi-conductor composites

doi: 10.13801/j.cnki.fhclxb.20210728.002
  • Received Date: 2021-06-02
  • Accepted Date: 2021-07-16
  • Rev Recd Date: 2021-07-09
  • Available Online: 2021-07-29
  • Publish Date: 2022-06-01
  • Owing to the incidental crosslinking reaction of monomer, the as-prepared poly(divinyldioxythiophene (PEDOT) always has poor electric conductivity and difficult subsequent processing. Thus, it is very important to develop appropriate polymerization method to synthesis PEDOT. Poly(divinyldioxythiophene has been synthesized via free radical oxidation polymerization in the one-dimensional channel of indium p-phthalic coordination polymer (In-BDC) metal organic framework material (MOF) as a reactive template to form PEDOT@In-BDC composite. The PEDOT@In-BDC composites were characterized by XRD, SEM, FTIR, TG and N2-sorption isotherm analysis. The results show that the monomer conversion of divinyldioxythiophene (EDOT) is higher than 91%. During the polymerization reaction, the framework of In-BDC template keeps constant. The specific surface area (BET) value of PEDOT@In-BDC composite is 45 m2/g. Compared with In-BDC template, PEDOT@In-BDC composites obtained by free radical oxidation polymerization of monomer divinyldioxythiophene in MOF are more stable. The result of current-voltage (I-V) linear scan test indicates that the PEDOT@In-BDC composite is novel semiconductor material and conductive based on PEDOT. The conductivity of PEDOT@In-BDC composite reaches 2.7×10−5 S/m. Compared with the functional porous material In-BDC (10−12 S/cm) , the PEDOT@In-BDC composite has higher electric conductivity and is at least six orders higher than that of In-BDC template.

     

  • loading
  • [1]
    LIU J, ZHANG F, ZOU X, et al. Facile synthesis of MIL-68(In) films with controllable morphology[J]. European Journal of Inorganic Chemistry,2012,2012(35):5784-5790.
    [2]
    陶益杰, 郑文伟, 程海峰, 等. 电致变色导电聚合物PEDOT的研究进展[J]. 材料导报, 2010, 24(7):113-117.

    TAO Y J, ZHENG W W, CHENG H F, et al. Research progress in electrochromic conducting polymer PEDOT[J]. Materials Review,2010,24(7):113-117(in Chinese).
    [3]
    范武升, 陈杰, 吴瑞凯, 等. PEDOT热电材料研究进展[J]. 高分子通报, 2018, 8:14-17.

    FAN W S, CHEN J, WU R K, et al. Research progress of PEDOT thermelectric materisla[J]. Chinses Journal of Polymer Bulletin,2018,8:14-17(in Chinese).
    [4]
    ZHAN L Z, SONG Z P, ZHANG J Y, et al. PEDOT: cathode active material with high specific capacity in novel electrolyte system[J]. Electrochim Acta,2008,53:8319. doi: 10.1016/j.electacta.2008.06.053
    [5]
    KIM T Y, PARK C M, KIM J E, et al. Electronic, chemical and structural change induced by organic solvents in tosylate-doped poly(3,4-ethylenedioxy-thiophene) (PEDOT-OTs)[J]. Synthetic Metals,2005,149:169. doi: 10.1016/j.synthmet.2004.12.011
    [6]
    RICARDO V, DAVID B, PENA J M S. Electro-optical analysis of PEDOT symmetrical electrochromic devices[J]. Solar Energy Mater Solar Cells,2008,92:107. doi: 10.1016/j.solmat.2007.03.037
    [7]
    PATRA S, BARAI K, MUNICHANDRAIAH N. Scanning electron microscopy studies of PEDOT prepared by various electrochemical routes[J]. Synthetic Metals,2008,158:430. doi: 10.1016/j.synthmet.2008.03.002
    [8]
    MESHERS S C J, VAN DUREN J K J, JANSSEN R A J. Themally induced transient absorption of light by poly(3,4-ethene-dioxythiophene): poly(styrenesulfonic acid)(PEDOT: PSS) film: A way to probcharge-carrier thermalization processes[J]. Advanced Functional Materials,2003,13(10):805. doi: 10.1002/adfm.200304398
    [9]
    汪斌华, 邓永红, 戈钧, 等. 不同溶剂中导电聚合物PEDOT的化学氧化聚合及光谱研究[J]. 功能材料, 2005, 36(10):1610. doi: 10.3321/j.issn:1001-9731.2005.10.040

    WANG B H, DENG Y H, GE J, et al. Chemical synthesis of poly(3,4-ethylenedioxythiophene) in three different solvents[J]. Journal of Functional materials,2005,36(10):1610(in Chinese). doi: 10.3321/j.issn:1001-9731.2005.10.040
    [10]
    UEMURA T, NAKANISHI R, MOCHIZUKI S, et al. Radical polymerization of 2,3-dimethyl-1,3-butadiene in coordination nanochannels[J]. Chemical Communication,2015,51(48):9892-9895. doi: 10.1039/C5CC01933H
    [11]
    陈启多, 韩凯, 程君, 等. 纳米硅/导电聚合物复合负极的制备与性能[J]. 电池, 2019, 49(1):3-7.

    CHEN Q D, HAN K, CHENG J, et al. Synthesis and performance of nano-silicon/conducting polymer composite anode[J]. Battery Bimonthly,2019,49(1):3-7(in Chinese).
    [12]
    LV Q. Unstirred preparation of soluble electroconductive polypyrrole nanoparticles[J]. Microchimica Acta,2010,168(3-4):205-213. doi: 10.1007/s00604-009-0278-4
    [13]
    陈小军, 胡翠雯, 崔子怡, 等. 直写3D打印GNPs-MWCNT导电聚合物复合材料的制备及性能[J]. 机械工程材料, 2020, 44(11):83-88. doi: 10.11973/jxgccl202011015

    CHEN X J, HU C W, CUI Z Y, et al. Preparation and performance of GNPs-MWCNT conductive polymer composite materials by direct writing 3D printing[J]. Materials for Mechanical Engineering,2020,44(11):83-88(in Chinese). doi: 10.11973/jxgccl202011015
    [14]
    LU C, BEN T, XU S, et al. Electrochemical synthesis of a microporous conductive polymer based on a metal-organic framework thin film[J]. Angewandte Chemie International Ediation,2014,53(25):6454-6458. doi: 10.1002/anie.201402950
    [15]
    NAYAK A, RAMA P S, KUMAR S, et al. Structural tuning of low band gap intermolecular push/pull side-chain polymers for organic photovoltaic applications[J]. Polymer Science,2017,35(9):1073-1085.
    [16]
    WANG X, YANG C, LIU P. Well-defined polypyrrole nanoflakes via chemical oxidative polymerization in the presence of sodium alkane sulfonate[J]. Materials Letters,2011,65(10):1448-1450. doi: 10.1016/j.matlet.2011.02.031
    [17]
    何亚萍, 韩权, 李伟, 等. 石墨烯-导电聚合物复合材料制备[J]. 化工新型材料, 2016, 44(10):45-48.

    HE Y P, HAN Q, LI W, et al. Preparation of graphene-conductive polymer composite[J]. New Chemical Materials,2016,44(10):45-48(in Chinese).
    [18]
    KAZARI M, VAEZI M R, KAZEMZADEH A. Enhanced rate performance of polypyrrole-coated sulfur/MWCNT cathode material: A kinetic study by electrochemical impedance spectroscopy[J]. Ionics,2013,20(5):635-643.
    [19]
    FENG X, YAN Z, LI R, et al. The synthesis of shape-controlled polypyrrole/graphene and the study of its capacitance properties[J]. Polymer Bulletin,2013,70(8):2291-2304. doi: 10.1007/s00289-013-0952-x
    [20]
    YANAI N, KITAYAMA K, HIJIKATA Y, et al. Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer[J]. Nature Materials,2011,10(10):787-793. doi: 10.1038/nmat3104
    [21]
    YANAI N, UEMURA T, INOUE M, et al. Guest-to-host transmission of structural changes for stimuli-responsive adsorption property[J]. Journal of America Chemistry Society,2012,134(10):4501-4504. doi: 10.1021/ja2115713
    [22]
    UEMURA T, UCHIDA N, ASANO A, et al. Highly photoconducting pi-stacked polymer accommodated in coordination nanochannels[J]. Journal of America Chemistry Society,2012,134(20):8360-8363. doi: 10.1021/ja301903x
    [23]
    KITAO T, BRACCO S, COMOTTI A, et al. Confinement of single polysilane chains in coordination nanospaces[J]. Journal of America Chemistry Society,2015,137(15):5231-5238. doi: 10.1021/jacs.5b02215
    [24]
    KITAO T, ZHANG Y, KITAGAWA S, et al. Hybridization of MOFs and polymers[J]. Chemistry Society Review,2017,46(11):3108-3133. doi: 10.1039/C7CS00041C
    [25]
    UEMURA T, MOCHIZAKI S, KITAGAWA S. Radical copolymerization mediated by unsaturated metal sites in coordination nanochannels[J]. ACS Macro Letters,2015,4(7):788-791. doi: 10.1021/acsmacrolett.5b00370
    [26]
    UEMURA T, NAKANISHI R, KASEDA T, et al. Controlled cyclopolymerization of difunctional vinyl monomers in coordination nanochannels[J]. Macromolecules,2014,47(21):7321-7326. doi: 10.1021/ma501232n
    [27]
    DISTEFANO G, SUZUKI H, TSUJIMOTO M, et al. Highly ordered alignment of a vinyl polymer by host-guest cross-polymerization[J]. Nature Chemistry,2013,5(4):335-341. doi: 10.1038/nchem.1576
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (805) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return