Volume 39 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
MAIMAITITUERSUN Wubuliaisan, WU Yanqing, HOU Xiao, et al. Numerical investigations on mesoscopic structure parameters affecting mechanical responses of propellant[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2949-2961. doi: 10.13801/j.cnki.fhclxb.20210708.001
Citation: MAIMAITITUERSUN Wubuliaisan, WU Yanqing, HOU Xiao, et al. Numerical investigations on mesoscopic structure parameters affecting mechanical responses of propellant[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2949-2961. doi: 10.13801/j.cnki.fhclxb.20210708.001

Numerical investigations on mesoscopic structure parameters affecting mechanical responses of propellant

doi: 10.13801/j.cnki.fhclxb.20210708.001
  • Received Date: 2021-05-17
  • Accepted Date: 2021-06-29
  • Rev Recd Date: 2021-06-25
  • Available Online: 2021-07-08
  • Publish Date: 2022-06-01
  • A computational representative volume element (RVE) framework considering interface, as well as particle morphology, was adopted to provide a better understanding and prediction of the existing links between the behaviors of contents, interface and the macroscopic mechanical responses of composite solid propellants. A cohesive zone model (CZM) was taken into account to study the significance of interface stiffness, strength and critical displacement, along with the relative contribution of particle morphology and interface, on the macroscopic mechanical properties of the propellant. Results indicate that the initial modulus of propellant increases from 0.67 MPa to 3.67 MPa as the interface stiffness varies between 0.004 MPa/mm and 400 MPa/mm, while the tensile strength of propellant increases from 0.15 MPa to 0.76 MPa when the interface strength changes from 0.05 MPa to 30 MPa, which implies that an increase in the interface stiffness has a limited improvement over the initial modulus of the propellant. In comparison, the interface strength improves its tensile strength remarkably. However, higher interfacial strength may lead to “damage localization” in the microstructure, thus reducing the elongation of propellant. The different behaviors observed on macroscopic view are rather due to interface than to the morphology of particles; all of the results exhibit that the interface is one of the major determining factors affecting the tensile properties of the propellant. Finally, based on the previous analyses, the creep behaviors of another propellant were predicted under various stress levels. It is found that the logarithm of creep rupture time is linear with constant stress.

     

  • loading
  • [1]
    孟红磊, 鞠玉涛. 含损伤非线性粘弹性本构模型及数值仿真应用[J]. 固体火箭技术, 2012, 35(6):764-768.

    MENG Honglei, JU Yutao. Nonlinear viscoelastic equation with cumulative damage and its application on numerical simulation[J]. Journal of solid Rocket Technology,2012,35(6):764-768(in Chinese).
    [2]
    HUI Li, JIN Shengxu, XIONG Chen, et al. Experimental investigation and modeling the compressive behavior of NEPE propellant under confining pressure[J]. Propellants, Explosives, Pyrotechnics,2021,46:1-14. doi: 10.1002/prep.202180101
    [3]
    封涛, 许进升, 范兴贵, 等. 考虑初始缺陷的HTPB推进剂粘超弹本构模型[J]. 含能材料, 2018, 26(4):316-322. doi: 10.11943/j.issn.1006-9941.2018.04.005

    FENG Tao, XU Jinsheng, FAN Xinggui, et al. Visco-hyperelastic constitutive model of HTPB propellant considering initial defects[J]. Chinese Journal of Energetic Materials,2018,26(4):316-322(in Chinese). doi: 10.11943/j.issn.1006-9941.2018.04.005
    [4]
    CUI H, SHEN Z, LI H. A new constitutive equation for solid propellant with the effects of aging and viscoelastic Poisson's ratio[J]. Meccanica,2018,53:2393-2410.
    [5]
    WANG Z, QIANG H, WANG T, et al. A thermo-visco-hyperelastic constitutive model of HTPB propellant with damage at intermediate strain rates[J]. Mechanics of Time-Dependent Materials,2018,22:291-314.
    [6]
    MA H, SHEN Z, LI D. A viscoelastic constitutive model of composite propellant considering dewetting and strain-rate and its implementation[J]. Propellants Explosives Pyrotechnics,2019,44:759-768. doi: 10.1002/prep.201800264
    [7]
    XU F. Micromechanics approach to the study of constitutive response and fracture of solid propellant materials[D]. Illinois: University of Illinois at Urbana-Campaign, 2007.
    [8]
    XU F, ARAVAS N, SOFRONIS P. Constitutive modeling of solid propellant materials with evolving microstructural damage[J]. Journal of the Mechanics and Physics of Solids,2008,56(5):2050-2073. doi: 10.1016/j.jmps.2007.10.013
    [9]
    HUR J, PARK J B, JUNG G D, et al. Enhancements on a micromechanical constitutive model of solid propellant[J]. International Journal of Solids and Structures,2016,87:110-119. doi: 10.1016/j.ijsolstr.2016.02.025
    [10]
    YUN K S, PARK J B, JUNG G D, et al. Viscoelastic constitutive modeling of solid propellant with damage[J]. International Journal of Solids and Structures,2016,80:118-127. doi: 10.1016/j.ijsolstr.2015.10.028
    [11]
    XU J, CHEN X, WANG H, et al. Thermo-damage-viscoelastic constitutive model of HTPB composite propellant[J]. International Journal of Solids and Structures,2014,51(18):3209-3217. doi: 10.1016/j.ijsolstr.2014.05.024
    [12]
    LEI M, WANG J, CHENG J, et al. A constitutive model of the solid propellants considering the interface strength and dewetting[J]. Composites Science and Technology,2020,185:107893.1-107893.9.
    [13]
    RAE P J, GOLDREIN H T, PALMER S, et al. Quasi-static studies of the deformation and failure of -HMX based polymer bonded explosives[J]. Proceedings Mathematical Physical & Engineering Sciences,2002,458(2019):743-762.
    [14]
    常武军. 复合固体推进剂细观损伤及其数值仿真研究[D]. 南京: 南京理工大学, 2013.

    CHANG W J. Research on microstructural damage and its numerical simulation method for composite solid propellant[D]. Nanjing: Nanjing University of Science and Technology, 2013(in Chinese).
    [15]
    LI G, WANG Y, JIang A, et al. Micromechanical investigation of debonding processes in composite solid propellants[J]. Propellants Explosives Pyrotechnics,2017,43(7):642-649.
    [16]
    ZHI S J, BING S, ZHANG J W. Multiscale modeling of heterogeneous propellants from particle packing to grain failure using a surface-based cohesive approach[J]. Acta Mechanica Sinica,2012,28(3):746-759. doi: 10.1007/s10409-012-0058-y
    [17]
    封涛, 郑健, 许进升, 等. 复合固体推进剂细观结构建模及脱黏过程数值模拟[J]. 航空动力学报, 2018, 33(1):223-231.

    FENG Tao, ZHENG Jian, XU Jinsheng, et al. Mesoscopic structure modeling and numerical simulation of debonding process of composite solid propellants[J]. Journal of Aerospace Power,2018,33(1):223-231(in Chinese).
    [18]
    CHANG W, JU Y, HAN B, et al. Numerical simulation of particle/matrix interface failure in composite propellant[J]. Journal of China Ordnance,2012,8(3):146-153.
    [19]
    FRANCQUEVILLE F D, DIANI J, GILORMINI P, et al. Use of a micromechanical approach to understand the mechanical behavior of solid propellants[J]. Mechanics of Materials,2021,153:103656. doi: 10.1016/j.mechmat.2020.103656
    [20]
    FRANCQUEVILLE F D, GILORMINI P, DIANI J, et al. comparison of the finite strain macroscopic behavior and local damage of a soft matrix highly reinforced by spherical or polyhedral particles[J]. European Journal of Mechanics-A/Solids,2020,84:104070. doi: 10.1016/j.euromechsol.2020.104070
    [21]
    TAN H, LIU C, HUANG Y, et al. The cohesive law for the particle/matrix interfaces in high explosives[J]. Journal of the Mechanics and Physics of Solids,2005,53(8):1892-1917. doi: 10.1016/j.jmps.2005.01.009
    [22]
    李高春, 邢耀国, 戢治洪, 等. 复合固体推进剂细观界面脱粘有限元分析[J]. 复合材料学报, 2011, 28(3):229-235.

    LI G C, XING Y G, JI Z H, et al. Finite element analysis of microscale interfacial debonding in composite solid propellants[J]. Acta Materiae Compositae Sinica,2011,28(3):229-235(in Chinese).
    [23]
    RUIZE H, CHANDRA P, VIKAS T, et al. Experimentally-validated mesoscale modeling of the coupled mechanical-thermal response of AP–HTPB energetic material under dynamic loading[J]. International Journal of Fracture,2016,203:277-298.
    [24]
    PRAKASH C, GUNDUZ I E, OSKAY C, et al. Effect of interface chemistry and strain rate on particle-matrix delamination in an energetic material[J]. Engineering Fracture Mechanics,2018,191:46-64.
    [25]
    PRAKASH C. Effect of interface chemical composition on the high strain rate dependent mechanical behavior of an energetic material[D]. West Lafayette: Purdue University, 2019.
    [26]
    YILMAZER U, FARRIS R J. Finite element formulation for modeling particle debonding in reinforced elastomers subjected to finite deformations[J]. Journal of Applied Polymer Science,1983,28:3280-3369. doi: 10.1016/j.cma.2006.06.008
    [27]
    NGO D, PARK K, PAULINO G H, et al. On the constitutive relation of materials with microstructure using a potential-based cohesive model for interface interaction[J]. Engineering Fracture Mechanics,2010,77(7):1153-1174. doi: 10.1016/j.engfracmech.2010.01.007
    [28]
    TOULEMONDE P A, DIANI J, GILORMINI P, et al. On the account of a cohesive interface for modeling the behavior until break of highly filled elastomers[J]. Mechanics of Materials,2016,93:124-133.
    [29]
    LÓPEZ R, SALAZAR A, RODRÍGUEZ J. Fatigue crack propagation behaviour of carboxyl-terminated polybutadiene solid rocket propellants[J]. International Jour-nal of Fracture,2020,223(1):3-15.
    [30]
    GAO Y F, BOWER A F. A simple technique for avoiding convergence problems in finite element simulations of crack nucleation and growth on cohesive interfaces[J]. Modelling & Simulation in Materials Science & Engineering,2004,12(3):453.
    [31]
    FRANCQUEVILLE F D, GILORMINI P, DIANI J, et al. Relationship between local damage and macroscopic response of soft materials highly reinforced by monodispersed particles[J]. Mechanics of Materials,2020,146:103408. doi: 10.1016/j.mechmat.2020.103408
    [32]
    FRANCQUEVILLE F D, GILORMINI P, DIANI J. Representative volume elements for the simulation of isotropic composites highly filled with monosized spheres[J]. International Journal of Solids and Structures,2019,158:277-286. doi: 10.1016/j.ijsolstr.2018.09.013
    [33]
    张镇国, 侯晓, 郜婕, 等. 一种高颗粒填充率丁羟推进剂二维细观模型生成方法[J]. 复合材料学报, 2019, 36(10):2302-2307.

    ZHANG Z G, HOU X, GAO J, etal. A method of generating two-dimensional mesoscopic model for hydroxyl-terminated polybutadiene propellant with high particle volume fraction[J]. Acta Materiae Compositae Sinica,2019,36(10):2302-2307(in Chinese).
    [34]
    MORALEDA J, SEGURADO J, LLORCA J. Finite deformation of incompressible fiber-reinforced elastomers: A computational micromechanics approach[J]. Journal of the Mechanics and Physics of Solids,2009,57(9):1596-1613. doi: 10.1016/j.jmps.2009.05.007
    [35]
    乌布力艾散·麦麦提图尔荪, 葛超, 董永香, 等. 基于Al/PTFE真实细观特性统计模型的宏观力学性能模拟[J]. 复合材料学报, 2016, 33(11):2528-2536.

    MAIMAITITUERSUN W, GE C, DONG Y X, et al. Simulation on mechanical properties of Al/PTFE based on mesoscopic statistical model[J]. Acta Materiae Compositae Sinica,2016,33(11):2528-2536(in Chinese).
    [36]
    GE Chao, DONG Yongxiang, MAIMAITITUERSUN Wubuliaisan, et al. Microscale simulation on mechanical properties of Al/PTFE composite based on real microstructures[J]. Materials,2016,9(7):590. doi: 10.3390/ma9070590
    [37]
    SONG W, LIU H, NING J. Tensile property and crack propagation behavior of tungsten alloys[J]. International Journal of Modern Physics B,2011,24(11):1475-1492.
    [38]
    SMIT R J M, BREKELMANS W A M, MEIJER H E H. Prediction of the mechanical behaviour of nonlinear heterogeneous systems by multi-level finite element modeling[J]. Computer Methods in Applied Mechanics and Engineering,1988,155(2):181-192.
    [39]
    LI S, SITNIKOVA E. Representative volume elements and unit cells—Concepts, theory, applications and implementation[M]. Amsterdam: Elsevier, 2019.
    [40]
    XIA Z, ZHANG Y, ELLYIN F. A unified periodical boundary conditions for representative volume elements of compo-sites and applications[J]. International Journal of Solids and Structures,2003,40:1907-1921. doi: 10.1016/S0020-7683(03)00024-6
    [41]
    TAN H, HUANG Y, LIU C, et al. The uniaxial tension of particulate composite materials with nonlinear interface debonding[J]. International Journal of Solids and Structures,2007,44(6):1809-1822. doi: 10.1016/j.ijsolstr.2006.09.004
    [42]
    赵玖玲, 强洪夫. 复合固体推进剂宏细观损伤机理[M]. 北京: 中国宇航出版社, 2014.

    ZHAO J L, QIANG H F. Macroscopic and microscopic damage mechanism of composite solid propellant[M]. Beijing: China Aerospace Publishing House, 2014(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(6)

    Article Metrics

    Article views (1392) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return