Volume 39 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
GUO Wenbo, HU Qiyao, XIAO Peng. Effect of interfacial reaction products on the wettability and interfacial strength of B4C/Al composites[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2941-2948. doi: 10.13801/j.cnki.fhclxb.20210707.005
Citation: GUO Wenbo, HU Qiyao, XIAO Peng. Effect of interfacial reaction products on the wettability and interfacial strength of B4C/Al composites[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2941-2948. doi: 10.13801/j.cnki.fhclxb.20210707.005

Effect of interfacial reaction products on the wettability and interfacial strength of B4C/Al composites

doi: 10.13801/j.cnki.fhclxb.20210707.005
  • Received Date: 2021-05-31
  • Accepted Date: 2021-06-30
  • Rev Recd Date: 2021-06-25
  • Available Online: 2021-07-08
  • Publish Date: 2022-06-01
  • The B4C/Al composites were prepared by stirring casting method. The method of experimental analysis combined with first-principles calculations was used to explore the influence mechanism of the interfacial reaction products Al3BC and TiB2 on the wettability of B4C/Al composite particles and the interfacial bonding strength. The results show that when the interface reaction product is Al3BC, the wettability of B4C particles has not been substantially improved, particle agglomeration still exists, and the interface bonding is poor. Excessive interface reaction makes the decomposition and loss of B4C particles serious, resulting in insignificant strengthening effect of B4C particles. When the interface reaction product is TiB2 by adding Ti element, the particle wettability is significantly improved, the agglomeration of B4C particles is significantly reduced, the interface bonding strength is higher, and the mechanical properties are significantly improved. The Al(111)/TiB2(0001) interface adhesion work of different terminals is greater than that of Al(111)/B4C(0001), indicating that the interface reaction product TiB2 can improve the wettability of B4C particles. The interface reaction product Al3BC is very limited in improving the wettability of B4C particles. A mixed covalent/metallic bond is formed on the interface of Al(111)/Al3BC(0001) and Al(111)/TiB2(0001). The chemical bonding strength on the Al(111)/TiB2(0001) interface is greater, and the interface bonding strength is correspondingly greater.

     

  • loading
  • [1]
    杨涛, 刘润爱, 王文先, 等. 热轧高含量B4C颗粒增强Al基复合材料的成形性能[J]. 复合材料学报, 2021, 38(7):2234-2243.

    YANG T, LIU R A, WANG W X, et al. Theformability of high content B4C particle reinforced Al matrix composites by hot rolling[J]. Acta Materiae Compositae Sinica,2021,38(7):2234-2243(in Chinese).
    [2]
    童攀, 林立, 王全兆, 等. 颗粒尺寸对B4C增强铝基中子吸收材料界面反应与力学性能的影响[J]. 复合材料学报, 2019, 36(4):927-937.

    TONG P, LIN L. WANG Q Z, et al. Effects of particle size on interfacial reaction and mechanical properties of B4C reinforced aluminum matrix neutron absorber materials[J]. Acta Materiae Compositate Sinica,2019,36(4):927-937(in Chinese).
    [3]
    靳涛, 王伟, 庞晓轩, 等. 热轧工艺对20% B4C/Al复合材料显微组织及缺陷的影响[J]. 材料导报, 2017, 31(S1):102-104.

    JIN Tao, WANG Wei, PANG Xiaoxuan, et al. Effect of hot rolling process on the microstructures and defects of 20wt% B4C/Al composites[J]. Materials Reports,2017,31(S1):102-104(in Chinese).
    [4]
    周丽, 张鹏飞, 王全兆, 等. B4C/6061Al复合材料热压缩断裂行为的多尺度研究[J]. 金属学报, 2019, 55(7):911-918.

    ZHOU Li, ZHANG Pengfei, WANG Quanzhao, et al. Multi-scale study on the fracture behavior of hot compression B4C/6061Al composite[J]. Acta Metallurgica Sinica,2019,55(7):911-918(in Chinese).
    [5]
    KALAISELVAN K, MURUGAN N, PARAMESWARAN S. Production and characterization of AA6061–B4C stir cast composite[J]. Materials & Design,2011,32(7):4004-4009.
    [6]
    邹爱华, 周贤良, 康志兵, 等. 不连续界面相Al4C3对SiC/Al复合材料界面结合影响的第一性原理及实验[J]. 复合材料学报, 2021, 38(3):824-831.

    ZOU Aihua, ZHOU Xianliang, KANG Zhibing, et al. Effect of discontinuous interfacial phase Al4C3 on interface bonding of SiC/Al composites: A first-principle and experiment[J]. Acta Materiae Compositae Sinica,2021,38(3):824-831(in Chinese).
    [7]
    GUO Hao, ZHANG Zhongwu, ZHANG Yang, et al. Improving the mechanical properties of B4C/Al composites by solidstate interfacial reaction[J]. Journal of Alloys and Compounds,2020,829:154521. doi: 10.1016/j.jallcom.2020.154521
    [8]
    MO Zhuoqiang, LIU Yunzhong, GENG Jiangjiang, et al. The effects of temperatures on microstructure evolution and mechanical properties of B4C-AA2024 composite strips prepared by semi-solid powder rolling[J]. Materials Science & Engineering A,2016,652(15):305-314.
    [9]
    CHEN H S, WANG W X, LI Y L, et al. The design, microstructure and tensile properties of B4C particulate reinforced 6061Al neutron absorber composites[J]. Journal of Alloys and Compounds,2015,632:23-29. doi: 10.1016/j.jallcom.2015.01.048
    [10]
    LI Yuli, WANG Wenxian, ZHOU Jun, et al. 10B areal density: A novel approach for design and fabrication of B4C/6061Al neutron absorbing materials[J]. Journal of Nuclear Mater-ials,2017,487:238-246. doi: 10.1016/j.jnucmat.2017.02.020
    [11]
    ZHANG Z, FORTIN K, CHARETTE A, et al. Effect of titanium on microstructure and fluidity of Al-B4C composites[J]. Journal of Materials Ence,2011,46(9):3176-3185.
    [12]
    HU Qiyao, ZHAO Haidong, LI Fangdong et al. Effects of manufacturing processes on microstructure and properties of Al/A356-B4C composites[J]. Materials and Manufacturing Processes,2016,31(10):1292-1300. doi: 10.1080/10426914.2016.1151049
    [13]
    朱刚. SiCp/6061搅拌制备及铸造组织性能的研究[D]. 广州: 华南理工大学, 2015.

    ZHU Gang. Research on microstructure and mechanical properities of SiCp/6061 composites prepared by stirring technology[D]. Guangzhou: South China University of Technology, 2015(in Chinese).
    [14]
    PERDEW J P, BURKE K, ERNZERHOF M, et al. Generalized gradient approximation made simple[J]. Physical Review Letters,1996,77:3865.
    [15]
    LAASONEN K, PASQUARELLO A, CAR R, et al. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials[J]. Physical Review B Condensed Matter,1993,47(16):10142. doi: 10.1103/PhysRevB.47.10142
    [16]
    FROYEN S. Brillouin-zone integration by Fourier quadra-ture: Special points for superlattice and supercell calculations[J]. Physical Review B Condensed Matter,1989,39(5):3168-3172. doi: 10.1103/PhysRevB.39.3168
    [17]
    DENG Chao, XU Ben, WU Ping, et al. Stability of the Al/TiB2 interface and doping effects of Mg/Si[J]. Applied Surface Science,2017,425:639-645. doi: 10.1016/j.apsusc.2017.06.227
    [18]
    XIAN Yajiang, QIU Ruizhi, WANG Xin, et al. Interfacial properties and electron structure of Al/B4C interface: A first-principles study[J]. Journal of Nuclear Materials,2016,478:227-235. doi: 10.1016/j.jnucmat.2016.06.015
    [19]
    YANG Jian, HUANG Jihua, FAN Shuhai, et al. LaAlO3 as the heterogeneous nucleus of ferrite: Experimental investigation and theoretical calculation[J]. Journal of Alloys and Compounds,2016,683:357-369. doi: 10.1016/j.jallcom.2016.05.091
    [20]
    HU Qiyao, ZHAO Haidong, GE Jilong, et al. Microstructure and mechanical properties of (B4C+Al3Ti)/Al hybrid composite fabricated by a two-step stir casting process[J]. Materials Science & Engineering A,2016,650:478-482.
    [21]
    ZHANG Jingjing, JUNG Moolee, YOUNG Heecho, et al. Effect of the Ti/B4C mole ratio on the reaction products and reaction mechanism in an Al-Ti-B4C powder mixture[J]. Materials Chemistry and Physics,2014,147(3):925-933. doi: 10.1016/j.matchemphys.2014.06.039
    [22]
    RUAN Qing, JIA Yuzhen, ZHENG Jiyun et al. Improvement on mechanical property of B4C/Al composites by addition of Ti through interfacial reaction[J]. Rare Metal Materials and Engineering,2019,48(6):1777-1784.
    [23]
    LI Yu, LI Qinliu, LIU Wei, et al. Effect of Ti content and stirring time on microstructure and mechanical behavior of Al-B4C composites[J]. Journal of Alloys and Compounds,2016,684:496-503. doi: 10.1016/j.jallcom.2016.05.135
    [24]
    ZHANG W, SMITH J R. Stoichiometry and adhesion of Nb/Al2O3[J]. Physical Review B,2000,61(24):16883-16889.
    [25]
    WANG Zhixuan, LI Qiulin, ZHENG Jiyuan, et al. Improving Al wettability on B4C by transition metal doping: A combined DFT and experiment study[J]. Rare Metal Materials and Engineering,2017,46(9):2345-2351. doi: 10.1016/S1875-5372(17)30195-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (887) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return