Volume 39 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
LI Siyuan, YANG Jikai, XIAO Nan. Preparation and photoelectrochemical properties of WO3/Bi2MoO6 composite films[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2734-2741. doi: 10.13801/j.cnki.fhclxb.20210706.001
Citation: LI Siyuan, YANG Jikai, XIAO Nan. Preparation and photoelectrochemical properties of WO3/Bi2MoO6 composite films[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2734-2741. doi: 10.13801/j.cnki.fhclxb.20210706.001

Preparation and photoelectrochemical properties of WO3/Bi2MoO6 composite films

doi: 10.13801/j.cnki.fhclxb.20210706.001
  • Received Date: 2021-05-11
  • Accepted Date: 2021-06-29
  • Rev Recd Date: 2021-06-21
  • Available Online: 2021-07-06
  • Publish Date: 2022-06-01
  • The application of WO3 materials has been attracted much attention in photoelectric catalysis, but its poor photo-generated electron hole separation ability and low utilization rate of sunlight have limited its photoelectric catalytic property. To solve this problem, WO3 nano-films were prepared on the conductive glass (FTO) by hydrothermal method, and WO3/Bi2MoO6 composite films with different reaction time (7 h, 9 h and 11 h) were synthesized on WO3 nano-films by solvothermal method. XRD and SEM tests proved the successful preparation of WO3/Bi2MoO6 composite films. The WO3/Bi2MoO6 composite film samples were subjected to absorption spectrum test, photocurrent test, photoelectric catalytic test and alternating current impedance test. The results show that the WO3/Bi2MoO6 composite film samples have better light absorption characteristics, more outstanding photocurrent characteristics and significantly improved photoelectrocatalysis activity compared with pure WO3 nano-films. And the WO3/Bi2MoO6 composite film samples with the hydrothermal reaction for 9 h have the highest photocurrent density and the best photoelectrocatalysis efficiency. The analysis suggests that the WO3/Bi2MoO6 composite film may constitute a heterojunction structure, which reduces the electronic impedance inside the composite film and increases the effective photoelectrochemical reaction sites; Meanwhile, the response range of the spectrum is expanded by increasing the utilization rate of sunlight. So the photoelectrochemical property can be significantly improved.

     

  • loading
  • [1]
    ARUTANTI O, OGI T, NANDIYANTO A, et al. Controllable crystallite and particle sizes of WO3 particles prepared by a spray-pyrolysis method and their photocatalytic activity[J]. Aiche Journal,2014,60(1):41-49. doi: 10.1002/aic.14233
    [2]
    ZHU Z, YING Y, LI J. Synthesis of flower-like WO3/Bi2WO6 heterojunction and enhanced photocatalytic degradation for Rhodamine B[J]. Micro & Nano Letters,2015,10(9):460-464.
    [3]
    ZENG Q Y, YU L L, GAO Y W, et al. A self-sustaining monolithic photoelectrocatalytic/ photovoltaic system based on a WO3/BiVO4 photoanode and Si PVC for efficiently producing clean energy from refractory organics degradation[J]. Applied Catalysis B: Environmental,2018,238:309-317. doi: 10.1016/j.apcatb.2018.07.005
    [4]
    XIANG Q, MENG G F, ZHAO H B, et al. Au nanoparticle modified WO3 nanorods with their enhanced properties for photocatalysis and gas sensing[J]. Journal of Physical Chemistry C, 2013, 114(5): 2049-2055.
    [5]
    CONG S, TIAN Y, LI Q, et al. Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications[J]. Advanced Materials,2014,26(25):4260-4267. doi: 10.1002/adma.201400447
    [6]
    KALANTAR-ZADEH K, VIJAYARAGHAVAN A, HAM M H, et al. Synthesis of atomically thin WO3 sheets from hydrated tungsten trioxide[J]. Chemistry of Materials,2010,22(19):5660-5666. doi: 10.1021/cm1019603
    [7]
    TACCA A, MEDA L, MARRA G, et al. Photoanodes based on nanostructured WO3 for water splitting[J]. ChemPhysChem,2012,13(12):3025-3034. doi: 10.1002/cphc.201200069
    [8]
    HOSSNIEI M G, SEFIDI P Y, AYDIN Z, et al. Toward enhancing the photoelectrochemical water splitting efficiency of organic acid doped polyaniline-WO3 photoanode by photo-assisted electrochemically reduced graphene oxide[J]. Electrochimica Acta,2020,333:135475.
    [9]
    ZHANG L, HAO X, LI Y, et al. Performance of WO3/g-C3N4 heterojunction composite boosting with NiS for photocatalytic hydrogen evolution[J]. Applied Surface Science,2020,499:143862.
    [10]
    SHARMA S, BASU S. Highly reusable visible light active hierarchical porous WO3/SiO2 monolith in centimeter length scale for enhanced photocatalytic degradation of toxic pollutants[J]. Separation and Purification Technology,2020,231(115916):1-10.
    [11]
    JIN T, DIAO P, WU Q, et al. WO3 nanoneedles/α-Fe2O3/cobalt phosphate composite photoanode for efficient photoelectrochemical water splitting[J]. Applied Catalysis B: Environmental,2014,148:304-310.
    [12]
    JIN T, DIAO P, XU D, et al. High-aspect-ratio WO3 nano-needles modified with nickel-borate for efficient photoelectrochemical water oxidation[J]. Electrochimica Acta,2013,114:271-277. doi: 10.1016/j.electacta.2013.09.172
    [13]
    AN X, YU J C, YU W, et al. WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing[J]. Journal of Materials Chemistry,2012,22(17):8525-8531. doi: 10.1039/c2jm16709c
    [14]
    LI H, DENG Q, LIU J, et al. Synthesis characterization and enhanced visible light photocatalytic activity of Bi2MoO6/Zn–Al layered double hydroxide hierarchical heterostructures[J]. Catalysis Science & Technology,2014,4(4):1028-1037.
    [15]
    MA Y, JIA Y, JIAO Z, et al. Hierarchical Bi2MoO6 nanosheet-built frameworks with excellent photocatalytic properties[J]. Chemical Communications,2015,51(30):6655-6658. doi: 10.1039/C5CC00634A
    [16]
    WANG L, WANG R, ZHOU Y, et al. Three-dimensional Bi2MoO6/TiO2 array heterojunction photoanode modified with cobalt phosphate cocatalyst for high-efficient photoelectrochemical water oxidation[J]. Catalysis Today,2019,335:262-268. doi: 10.1016/j.cattod.2018.11.054
    [17]
    ZHANG Z, ZHAO C, LIN S, et al. Oxygen vacancy modified Bi2MoO6/WO3 electrode with enhanced photoelectrocatalytic degradation activity toward RhB[J]. Fuel,2021,285(119171):1-11.
    [18]
    BI J H, WU L, LI Z H,et al. Simple solvothermal routes to synthesize nanocrystalline Bi2MoO6 photocatalysts with different morphologies[J]. Acta Materialia,2007,55(14):4699-4705. doi: 10.1016/j.actamat.2007.04.034
    [19]
    YU J, YAN Z, GAO X, et al. Enhancement of photo-to-current efficiency over two-dimensional Bi2MoO6 nanoplate thin-film photoelectrode[J]. Electrochemical and Solid-State Letters,2008,11(11):B197-B200. doi: 10.1149/1.2968955
    [20]
    LONG M, CAI W, KISCH H. Photoelectrochemical properties of nanocrystalline Aurivillius phase Bi2MoO6 film under visible light irradiation[J]. Chemical Physics Letters,2008,461(1-3):102-105. doi: 10.1016/j.cplett.2008.06.081
    [21]
    SUN J, ZHANG Y, TIAN X, et al. Fabrication of Bi2 MoO6 photocatalytic fibers via wet spinning and enhanced photocatalytic activity[J]. IOP Conference Series Materials Science and Engineering,2020,735:012013. doi: 10.1088/1757-899X/735/1/012013
    [22]
    ZHANG Q, ZHAO Z K, SHEN Z R, et al. One-step hydrothermal method to synthesize Bi/Bi2MoO6 composite for photoelectric catalyst[J]. Functional Materials Letters,2017,10(05):1750053. doi: 10.1142/S1793604717500539
    [23]
    MA Y, JIA Y L, WANG L N,et al. Exfoliated thin Bi2MoO6 nanosheets supported on WO3 electrode for enhanced photoelectrochemical water splitting[J]. Applied Surface Science,2016,390:399-405. doi: 10.1016/j.apsusc.2016.08.116
    [24]
    LI S, HU S, JIANG W, et al. In situ construction of WO3 nano-particles decorated Bi2MoO6 microspheres for boosting photocatalytic degradation of refractory pollutants[J]. Journal of Colloid and Interface Science,2019,556:335-344. doi: 10.1016/j.jcis.2019.08.077
    [25]
    ZHANG H S, YU D, WANG W, et al. Multiple heterojunction system of Bi2MoO6/WO3/Ag3PO4 with enhanced visible-light photocatalytic performance towards dye degradation[J]. Advanced Powder Technology,2019,30(9):1910-1919. doi: 10.1016/j.apt.2019.06.010
    [26]
    TIAN G H, CHEN Y J, ZHOU W, et al. Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts[J]. Journal of Materials Chemistry,2011,21(3):887-892.
    [27]
    PHURUANGRAT A, PUTDUM S, DUMRONGROJTHANATH P, et al. Hydrothermal synthesis of Bi2MoO6 visible-light-driven photocatalyst[J]. Journal of Nanomaterials,2015,2015(2):1-6.
    [28]
    WANG Q, LU Q, WEI M, et al. ZnO/γ-Bi2MoO6 heterostructured nanotubes: electrospinning fabrication and highly enhanced photoelectrocatalytic properties under visible-light irradiation[J]. Journal of Sol-Gel Science and Technology,2018,85(1):84-92. doi: 10.1007/s10971-017-4519-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (790) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return