Volume 39 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
CHEN Qi, GONG Wei, MIAO Jijun. Corrosion extents of steel bar in copper slag concrete after exposure to high temperature under chloride attack[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2875-2884. doi: 10.13801/j.cnki.fhclxb.20210622.006
Citation: CHEN Qi, GONG Wei, MIAO Jijun. Corrosion extents of steel bar in copper slag concrete after exposure to high temperature under chloride attack[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2875-2884. doi: 10.13801/j.cnki.fhclxb.20210622.006

Corrosion extents of steel bar in copper slag concrete after exposure to high temperature under chloride attack

doi: 10.13801/j.cnki.fhclxb.20210622.006
  • Received Date: 2021-05-26
  • Accepted Date: 2021-06-16
  • Rev Recd Date: 2021-06-13
  • Available Online: 2021-06-22
  • Publish Date: 2022-06-01
  • In order to investigate the influence of high temperature and copper slag fine aggregate on corrosion mode of steel bar in concrete, high temperature test was carried out on concrete specimens with different copper slag replacing ratios, then the artificial accelerated chloride ion corrosion test was conducted on the specimens using dry-wet cycling immersion method, and the corrosion state of steel bars embedded in concrete was monitored by measuring the half-cell potential value using electrochemical method, the chloride ion content in concrete and corrosion rate of steel bar were also measured at last. The results show that the half-cell potential method well reflects the actual corrosion situation of steel bar in specimen. High temperature destroys the chloride ion penetration resistance performance of concrete, thus causing the corrosion degree of steel bar in concrete specimen increases with the increase of heating temperature. In addition, the combined effect of inherent larger expansion deformation of copper slag at high temperature and uncoordinated shrinkage between copper slag and cement paste after cooling furtherly destroys the microstructure of concrete, thus causing the corrosion rate of steel bar increases with the increase of copper slag replacing ratio. A fitting formula for corrosion depth of steel bar in copper slag concrete after exposure to high temperature under chloride attack was established at last.

     

  • loading
  • [1]
    智研咨询集团. 2019—2025年中国铜冶炼行业市场深度评估及未来发展趋势研究报告[R]. 北京: 2019.

    Zhiyan Consulting Group. Research report on market depth assessment and future development trend of China copper smelting industry from 2019 to 2025[R]. Beijing: 2019(in Chinese).
    [2]
    SONG J, FENG S, XIONG R, et al. Mechanical properties, pozzolanic activity and volume stability of copper slag-filled cementitious materials[J]. Materials Science,2019,26(2):218-224. doi: 10.5755/j01.ms.26.2.21447
    [3]
    CHITHRA S, SENTHIL KUMAR S R R, CHINNARAJU K. The effect of colloidal nano-silica on workability, mechanical and durability properties of high performance concrete with copper slag as partial fine aggregate[J]. Construction and Building Materials,2016,113:794-804. doi: 10.1016/j.conbuildmat.2016.03.119
    [4]
    朱街禄, 宋军伟, 王露, 等. 铜矿渣在水泥混凝土应用的研究进展[J]. 硅酸盐通报, 2017, 36(11):3676-3682.

    ZHU Jielu, SONG Junwei, WANG Lu, et al. Research progress on copper slag in cement and concrete[J]. Bulletin of the Chinese Ceramic Society,2017,36(11):3676-3682(in Chinese).
    [5]
    LYE C Q, KOH S K, MANGABHAI R, et al. Use of copper slag and washed copper slag as sand in concrete: A state-of-the-art review[J]. Magazine of Concrete Research,2015,67(12):665-679. doi: 10.1680/macr.14.00214
    [6]
    史公初, 廖亚龙, 张宇, 等. 铜冶炼渣制备建筑材料及功能材料的研究进展[J]. 材料导报, 2020, 34(13):13044-13049. doi: 10.11896/cldb.19040073

    SHI Gongchu, LIAO Yalong, ZHANG Yu, et al. Research progress on preparation of building materials and functional materials with copper metallurgical slag[J]. Materials Review,2020,34(13):13044-13049(in Chinese). doi: 10.11896/cldb.19040073
    [7]
    AFSHOON I, SHARIFI Y. Utilization of micro copper slag in SCC subjected to high temperature[J]. Journal of Building Engineering,2020,29:101128. doi: 10.1016/j.jobe.2019.101128
    [8]
    杜海云, 郭荣鑫, 马倩敏, 等. 铜渣胶凝材料高温力学性能的实验研究[J]. 硅酸盐通报, 2016, 35 (10):3258-3263.

    DU Haiyun, GUO Rongxin, MA Qianmin, et al. Mechanical properties of cementitious materials containing copper slag at high temperatures[J]. Bulletin of the Chinese Ceramic Society,2016,35 (10):3258-3263(in Chinese).
    [9]
    PREM P R, VERMA M, AMBILY P S. Sustainable cleaner production of concrete with high volume copper slag[J]. Journal of Cleaner Production,2018,193:43-58. doi: 10.1016/j.jclepro.2018.04.245
    [10]
    GUPTA N, SIDDIQUE R. Durability characteristics of self-compacting concrete made with copper slag[J]. Construction and Building Materials,2020,247:118580. doi: 10.1016/j.conbuildmat.2020.118580
    [11]
    KHARADE A S, KAPADIYA S V, CHAVAN R. An experimental investigation of properties of concrete with partial or full replacement of fine aggregates through copper slag[J]. International Journal of Engineering Research and Technology,2013,2(3):1-10.
    [12]
    WU W, ZHANG W, MA G. Optimum content of copper slag as a fine aggregate in high strength concrete[J]. Materials and Design,2010,31:2878-2883. doi: 10.1016/j.matdes.2009.12.037
    [13]
    GONG W, UEDA T. Properties of self-compacting concrete containing copper slag aggregate after heating up to 400℃[J]. Structural Concrete,2018,19(6):1873-1880. doi: 10.1002/suco.201700234
    [14]
    中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012[S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban-Rural Development, People’s Republic of China. Standard methods for testing of concrete structures: GB/T 50152—2012[S]. Beijing: China Architecture & Building Press, 2012(in Chinese).
    [15]
    徐沛. 通电、干湿及盐雾条件下钢筋混凝土锈胀细观试验研究[D]. 深圳: 深圳大学, 2017.

    XU Pei. Microscopic experimental study on rust expansion of reinforced concrete under impressed current, dry-wet cycling and salt fog conditions[D]. Shenzhen: Shenzhen University, 2017(in Chinese).
    [16]
    LUNDGREN K, TAHERSHAMSI M, ZANDI K, et al. Tests on anchorage of naturally corroded reinforcement in concrete[J]. Materials and Structures,2015,48:2009-2022. doi: 10.1617/s11527-014-0290-y
    [17]
    李趁趁, 于爱民, 高丹盈, 等. 侵蚀环境下FRP条带加固锈蚀钢筋混凝土圆柱轴心受压试验[J]. 复合材料学报, 2020, 37(8):2015-2028.

    LI Chenchen, YU Aimin, GAO Danying, et al. Experimental study on axial compression of corroded reinforced concrete columns strengthened with FRP strips under erosion environment[J]. Acta Materiae Compositae Sinica,2020,37(8):2015-2028(in Chinese).
    [18]
    柳俊哲, 邢锋, 张振文, 等. 混凝土中钢筋腐蚀的测定与评价方法[J]. 材料导报, 2008(10):80-83. doi: 10.3321/j.issn:1005-023X.2008.10.019

    LIU Junzhe, XING Feng, ZHANG Zhenwen, et al. Measuring method and evaluation method of steel corrosion of reinforced concrete[J]. Materials Review,2008(10):80-83(in Chinese). doi: 10.3321/j.issn:1005-023X.2008.10.019
    [19]
    高新亮, 付贵勤, 朱苗勇, 等. 低合金耐候钢在含氯离子环境中的腐蚀行为[J]. 北京科技大学学报, 2012, 34(11):1282-1287.

    GAO Xinliang, FU Guiqin, ZHU Miaoyong, et al. Corrosion behavior of low-alloy weathering steel in environment containing chloride ions[J]. Journal of University of Science and Technology Beijing,2012,34(11):1282-1287(in Chinese).
    [20]
    徐港, 卫军, 王青. 锈蚀钢筋与混凝土粘结性能的梁式试验[J]. 应用基础与工程科学学报, 2009, 17(4):549-557. doi: 10.3969/j.issn.1005-0930.2009.04.007

    XU Gang, WEI Jun, WANG Qing. Beam test study on bond behavior of corroded reinforcing bar in concrete[J]. Jour-nal of Basic Science and Engineering,2009,17(4):549-557(in Chinese). doi: 10.3969/j.issn.1005-0930.2009.04.007
    [21]
    徐港, 费红芳, 刘德富, 等. 混凝土中钢筋锈蚀深度预测模型[J]. 建筑材料学报, 2011, 14(6):844-849. doi: 10.3969/j.issn.1007-9629.2011.06.024

    XU Gang, FEI Hongfang, LIU Defu, et al. Prediction model on the rebar corrosion depth in concrete[J]. Journal of Building Materials,2011,14(6):844-849(in Chinese). doi: 10.3969/j.issn.1007-9629.2011.06.024
    [22]
    中华人民共和国交通运输部. 水运工程混凝土试验检测技术规范: JTS/T 236—2019[S]. 北京: 人民交通出版社, 2019.

    Ministry of Transport of the People’s Republic of China. Technical specification for concrete testing of port and waterway engineering: JTS/T 236—2019[S]. Beijing: China Communications Press, 2019(in Chinese).
    [23]
    American Society for Testing and Materials. Standard test method for half-cell potentials of uncoated reinforcing steel in concrete: ASTM C876—91[S]. West Conshohocken: ASTM, 1999.
    [24]
    韩涛, 靳秀芝, 王慧奇, 等. 高温对水泥石结构和性能的影响及激励分析[J]. 中北大学学报(自然科学版), 2015, 36 (3):378-383.

    HAN Tao, JIN Xiuzhi, WANG Huiqi, et al. Influence and mechanism analysis of high temperature on the structure and properties of hydrated cement pastes[J]. Journal of North University of China (Natural Science Edition),2015,36 (3):378-383(in Chinese).
    [25]
    勾密峰, 管学茂, 张海波. 单硫型水化硫铝酸钙对氯离子的固化作用[J]. 建筑材料学报, 2012, 15 (6):863-866. doi: 10.3969/j.issn.1007-9629.2012.06.025

    GOU Mifeng, GUAN Xuemao, ZHANG Haibo. Chloride binding in monosulfoaluminate hydrate[J]. Journal of Building Materials,2012,15 (6):863-866(in Chinese). doi: 10.3969/j.issn.1007-9629.2012.06.025
    [26]
    韩学强, 詹树林, 徐强, 等. 干湿循环作用对混凝土抗氯离子渗透侵蚀性能的影响[J]. 复合材料学报, 2020, 37(1):198-204.

    HAN Xueqiang, ZHAN Shulin, XU Qiang, et al. Effect of dry-wet cycling on resistance of concrete to chloride ion permeation erosion[J]. Acta Materiae Compositae Sinica,2020,37(1):198-204(in Chinese).
    [27]
    YANG O, ZHANG B, YAN G, et al. Bond performance between slightly corroded steel bar and concrete after exposure to high temperature[J]. Journal of Structure Engineering,2018,144(11):04018209. doi: 10.1061/(ASCE)ST.1943-541X.0002217
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(6)

    Article Metrics

    Article views (855) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return