Volume 39 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
CAO Zhongliang, LIN Guojun, DONG Mingjun, et al. Variable angle placement trajectory design of non-uniform rational B-splines curve and buckling property of cylindrical shell[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 3020-3028. doi: 10.13801/j.cnki.fhclxb.20210622.003
Citation: CAO Zhongliang, LIN Guojun, DONG Mingjun, et al. Variable angle placement trajectory design of non-uniform rational B-splines curve and buckling property of cylindrical shell[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 3020-3028. doi: 10.13801/j.cnki.fhclxb.20210622.003

Variable angle placement trajectory design of non-uniform rational B-splines curve and buckling property of cylindrical shell

doi: 10.13801/j.cnki.fhclxb.20210622.003
  • Received Date: 2021-05-19
  • Accepted Date: 2021-06-16
  • Rev Recd Date: 2021-06-15
  • Available Online: 2021-06-22
  • Publish Date: 2022-06-01
  • Based on cubic non-uniform rational B-splines (NURBS) curve, the design and bucking property of cylindrical shell produced by fiber variable angle placement were studied. Firstly, the reference trajectory of fiber variable angle placement was defined by cubic NURBS curve, and the parameterized expression of fiber variable angle placement was determine. Secondly, taking the fiber variable angle placements ±<25(0.4)(0.8)75> and ±<65(0.4)(0.8)10> as examples, the fiber angle distributions of the axial and circumferential shift placements of the cubic NURBS curve on the cylindrical shell were demonstrated. Then, the ±45° placement of constant stiffness cylindrical shell was replaced by the fiber variable angle placements. The linear buckling analysis of the variable stiffness cylindrical shell was carried out, and the axial translation cylindrical shell, circumferential translation cylindrical shell and constant stiffness cylindrical shell were compared. Finally, the influence of weight factors on the buckling property was studied under the constraint of curvature radius. The results show that the circumferential translation cylindrical shell has better buckling performance. Under the constraint of curvature radius, the variable stiffness cylindrical shell with excellent buckling performance can be obtained by determining initial angle, termination angle and control point parameter, and the buckling load of the variable stiffness cylindrical shell can be increased again by changing the weight factor.

     

  • loading
  • [1]
    杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU Shanyi. Advanced composite material and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [2]
    韩振宇, 李玥华, 富宏亚, 等. 热塑性复合材料纤维铺放工艺的研究进展[J]. 材料工程, 2012(2):91-96. doi: 10.3969/j.issn.1001-4381.2012.02.020

    HAN Zhenyu, LI Yuehua, FU Hongya, et al. Thermoplastic composites fiber placement process research[J]. Journal of Materials Engineering,2012(2):91-96(in Chinese). doi: 10.3969/j.issn.1001-4381.2012.02.020
    [3]
    赵欣, 朱健健, 李梦, 等. 复合材料应用研究与产业发展建议[J]. 材料导报, 2016, 30(S1):525-530.

    ZHAO Xin, ZHU Jianjian, LI Meng, et al. Research on composites application and industrial development suggestion[J]. Materials Reports,2016,30(S1):525-530(in Chinese).
    [4]
    陈绍杰. 大型飞机与复合材料[J]. 航空制造技术, 2008(15):32-37. doi: 10.3969/j.issn.1671-833X.2008.15.003

    CHEN Shaojie. Large aircraft and composite[J]. Aeronautical Manufacturing Technology,2008(15):32-37(in Chinese). doi: 10.3969/j.issn.1671-833X.2008.15.003
    [5]
    张小辉, 朱玉祥, 张少秋, 等. 先进复合材料自动铺丝技术研究进展[J]. 航空制造技术, 2018, 61(7):54-58.

    ZHANG Xiaohui, ZHU Yuxiang, ZHANG Shaoqiu, et al. Research progress on automated fiber placement technol-ogy[J]. Aeronautical Manufacturing Technology,2018,61(7):54-58(in Chinese).
    [6]
    GÜRDAL Z, OLMEDO R. In-plane response of laminates with spatially varying fiber orientations: variable stiffness concept[J]. AIAA Journal,1993,31(4):751-758. doi: 10.2514/3.11613
    [7]
    GÜRDAL Z, TATTING B, WU K. Tow-placement technol-ogy and fabrication issues for laminated composite structures[C]//Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Austin, Texas: AIAA, 2005: 1-18.
    [8]
    WU Z, WEAVER P M, RAJU G, et al. Buckling analysis and optimisation of variable angle tow composite plates[J]. Thin-Walled Structures,2012,60:163-172. doi: 10.1016/j.tws.2012.07.008
    [9]
    ALHAJAHMAD A, ABDALLA M M, GÜRDAL Z. Design tailor-ing for pressure pillowing using tow-placed steered fibers[J]. Journal of Aircraft,2008,45(2):630-640. doi: 10.2514/1.32676
    [10]
    ALHAJAHMAD A, ABDALLA M M, GÜRDAL Z. Optimal design of tow-placed fuselage panels for maximum strength with buckling considerations[J]. Journal of Aircraft,2010,47(3):775-782. doi: 10.2514/1.40357
    [11]
    MAROUENE A, BOUKHILI R, CHEN J, et al. Effects of gaps and overlaps on the buckling behavior of an optimally designed variable-stiffness composite laminates-A numerical and experimental study[J]. Composite Structures,2016,140:556-566. doi: 10.1016/j.compstruct.2016.01.012
    [12]
    BLOM A W, STICKLER P B, GÜRDAL Z. Optimization of a composite cylinder under bending by tailoring stiffness properties in circumferential direction[J]. Composites Part B: Engineering,2010,41(2):157-165. doi: 10.1016/j.compositesb.2009.10.004
    [13]
    ROUHI M, GHAYOOR H, HOA S V, et al. Multi-objective design optimization of variable stiffness composite cylinders[J]. Composites Part B: Engineering,2015,69(69):249-255.
    [14]
    ROUHI M, GHAYOOR H, HOA S V, et al. Effect of structural parameters on design of variable-stiffness composite cylinders made by fiber steering[J]. Composite Structures,2014,118:472-481. doi: 10.1016/j.compstruct.2014.08.021
    [15]
    ROUHI M, GHAYOOR H, FORTIN-SIMPSON J, et al. Design, manufacturing, and testing of a variable stiffness composite cylinder[J]. Composite Structures,2018,184:146-152. doi: 10.1016/j.compstruct.2017.09.090
    [16]
    KHANI A, ABDALLA M M, GÜRDAL Z. Circumferential stiffness tailoring of general cross section cylinders for maximum buckling load with strength constraints[J]. Composite Structures,2012,94(9):2851-2860. doi: 10.1016/j.compstruct.2012.04.018
    [17]
    吴尘瑾, 祖磊, 李书欣, 等. 变刚度复合材料层合板的纤维铺放路径设计及屈曲分析[J]. 玻璃钢/复合材料, 2018(4):5-10.

    WU Chenjin, ZU Lei, LI Shuxin, et al. Desigh of fiber placement path and buckling analysis of variable-stiffness composite laminates[J]. Fiber Reinforcement Fiber/Compo-sites,2018(4):5-10(in Chinese).
    [18]
    闫光, 韩小进, 阎楚良, 等. 复合材料圆柱壳轴压屈曲性能分析[J]. 复合材料学报, 2014, 31(3):781-787.

    YAN Guang, HAN Xiaojin, YAN Chuliang, et al. Buckling analysis of composite cylindrical shell under axial compression load[J]. Acta Materiae Compositae Sinica,2014,31(3):781-787(in Chinese).
    [19]
    孙士平, 张冰, 邓同强, 等. 复合载荷作用变刚度复合材料回转壳屈曲优化[J]. 复合材料学报, 2019, 36(4):1052-1061.

    SUN Shiping, ZHANG Bing, DENG Tongqiang, et al. Buckling optimization of variable stiffness composite rotary shell under combined loads[J]. Acta Materiae Compositae Sinica,2019,36(4):1052-1061(in Chinese).
    [20]
    吴双华, 尹冠生, 陈童, 等. 变刚度圆柱壳屈曲分析及铺丝路径优化[J]. 复合材料科学与工程, 2020(3):37-43. doi: 10.3969/j.issn.1003-0999.2020.03.006

    WU Shuanghua, YIN Guansheng, CHEN Tong, et al. Buckling analysis of variable stiffness cylindrical shell and optimization of laying path[J]. Composites Science and Engineering,2020(3):37-43(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.03.006
    [21]
    邓同强. 变刚度复合材料层合板壳的分析与优化[D]. 南昌: 南昌航空大学, 2017.

    DENG Tongqiang. Analysis and optimization of laminated composite shells with variable stiffness[D]. Nanchang: Nanchang Hangkong University, 2017(in Chinese).
    [22]
    赵志远. 基于机器人的热塑性复合材料铺放装备及工艺仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    ZHAO Zhiyuan. Research on robot-based placement equipment and process simulation of thermoplastic composite[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (944) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return