Volume 39 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
CHENG Fei, HU Yunsen. Flexural strength enhancement study of aluminum-CFRP at liquid nitrogen temperature[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 3009-3019. doi: 10.13801/j.cnki.fhclxb.20210616.003
Citation: CHENG Fei, HU Yunsen. Flexural strength enhancement study of aluminum-CFRP at liquid nitrogen temperature[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 3009-3019. doi: 10.13801/j.cnki.fhclxb.20210616.003

Flexural strength enhancement study of aluminum-CFRP at liquid nitrogen temperature

doi: 10.13801/j.cnki.fhclxb.20210616.003
  • Received Date: 2021-05-17
  • Accepted Date: 2021-06-10
  • Rev Recd Date: 2021-06-08
  • Available Online: 2021-06-17
  • Publish Date: 2022-06-01
  • The adhesive bonding strength enhancement of aluminum substrate and carbon fiber reinforced polymer (CFRP) at cryogenic temperature has attracted far-ranging attention with their application expanding to rocket booster. Aiming at the potential bonding interface defect of epoxy joint, we adopted the anodizing and sanding treatments to modify surface performance of Al substrate and CFRP panel respectively. The resin pre-coating (RPC) technique was used to eliminate the originally existing defect caused by macromolecular epoxy at the root of porous Al substrate. The carbon nanotubes were applied as additives to be impregnated into channels on Al substrate surface via RPC technique and construct the quasi-Z directional fiber bridging, which can further improve the adhesive bonding strength of epoxy joint. The three-point bending (3-P-B) results show the flexural strength of aluminum substrate-CFRP after treated has been enhanced by 14.6% at room temperature, and even higher 27.6% at liquid nitrogen temperature based on that of the one only cleaned by acetone. Failure mode exhibits the weaker adhesive failure on bonding interface has been transformed into main structure fracture failure of CFRP after combined surface treatments at both room temperature and liquid nitrogen temperature. Overall, the effective treatment methods can offer an alternative reference in industrial application of cryogenic liquid fuel tank.

     

  • loading
  • [1]
    李游, 李传习, 郑辉, 等. 固化剂混掺对高温下CFRP板-钢板界面黏结性能的影响[J]. 复合材料学报, 2021, 38(12):4073-4089.

    LI Y, LI C X, ZHENG H, et al. Effect of curing agent mixing on interfacial bond behavior of glued CFRP plate-steel plate at elevated temperature[J]. Acta Materiae Compositae Sinica,2021,38(12):4073-4089(in Chinese).
    [2]
    任明伟, 洪治国, 周玉敬, 等. 复合材料防撞梁低速碰撞优化设计[J]. 复合材料学报, 2022, 39(2):854-862.

    REN M W, HONG Z G, ZHOU Y J. Low-speed collision optimization design of composite bumper[J]. Acta Materiae Compositae Sinica,2022,39(2):854-862(in Chinese).
    [3]
    刘洋, 庄蔚敏. 碳纤维增强树脂复合材料和铝合金温热自冲铆接工艺及接头力学性能[J]. 复合材料学报, 2021, 38(11):3563-3577.

    LIU Y, ZHUANG W M. Joining process and mechanical properties of warm self-piercing riveting for carbon fiber reinforced polymer and aluminum alloy[J]. Acta Materiae Compositae Sinica,2021,38(11):3563-3577(in Chinese).
    [4]
    包建文, 蒋诗才, 张代军. 航空碳纤维树脂基复合材料的发展现状和趋势[J]. 科技导报, 2018, 36(9):52-63.

    BAO J W, JIANG S C, ZHANG D J. Current status and trends of aeronautical resin matrix composites reinforced by carbon fiber[J]. Science & Technology Review,2018,36(9):52-63(in Chinese).
    [5]
    CHENG F, HU YS, LV ZF, et al. Directing helical CNT into chemically-etched micro-channels on aluminum substrate for strong adhesive bonding with carbon fiber composites[J]. Composites Part A: Applied Science and Manufacture,2020,135:105952. doi: 10.1016/j.compositesa.2020.105952
    [6]
    HU Y S, YUAN B Y, CHENG F, et al. NaOH etching and re-sin pre-coating treatments for stronger adhesive bonding between CFRP and aluminium alloy[J]. Composites Part B: Engineering,2019,178:107478. doi: 10.1016/j.compositesb.2019.107478
    [7]
    FIORE V, CALABRESE L, PROVERBIO E, et al. Salt spray fog ageing of hybrid composite/metal rivet joints for automo-tive applications[J]. Composites Part B: Engineering,2017,108:65-74. doi: 10.1016/j.compositesb.2016.09.096
    [8]
    MURRAY B R, DOULE A, FEERICK P J, et al. Rotational moulding of PEEK polymer liners with carbon fibre/PEEK over tape-placement for space cryogenic fuel tanks[J]. Material Design,2017,132:567-581. doi: 10.1016/j.matdes.2017.07.026
    [9]
    RAMOLA L, SANKARESWARAN N. Design and modal analy-sis of cryogenic rocket propellant tank[J]. International Journal of Scientific Research in Science, Engineering and Technology, 2016, 2: 614-620.
    [10]
    HU Y S, CHENG F, JI Y, et al. Effect of aramid pulp on low temperature flexural properties of carbon fibre reinforced plastics[J]. Composites Science and Technology,2020,192:108095. doi: 10.1016/j.compscitech.2020.108095
    [11]
    SETHI S, RAY B C. Experimental study on the mechanical behavior and microstructural assessment of Kevlar/epoxy composites at liquid nitrogen temperature[J]. Journal of the Mechanical Behavior of Materials,2014,23:95-100. doi: 10.1515/jmbm-2014-0011
    [12]
    SUN Z, SHI S, HU X Z, et al. Short-aramid-fiber toughening of epoxy adhesive joint between carbon fiber composites and metal substrates with different surface morphology[J]. Composites Part B: Engineering,2015,77:38-45. doi: 10.1016/j.compositesb.2015.03.010
    [13]
    SUN G, LIU X, ZHENG G, et al. On fracture characteristics of adhesive joints with dissimilar materials-An experimen-tal study using digital image correlation (DIC) technique[J]. Composites Structure,2018,201:1056-1075. doi: 10.1016/j.compstruct.2018.06.018
    [14]
    PARK S Y, CHOI W J, CHOI H S, et al. Recent trends in surface treatment technologies for airframe adhesive bonding processing: A review (1995-2008)[J]. The Journal of Adhesion,2010,86:192-221. doi: 10.1080/00218460903418345
    [15]
    WANG B, HU X, HUI J, et al. CNT-reinforced adhesive joint between grit-blasted steel substrates fabricated by simple resin pre-coating method[J]. The Journal of Adhesion,2018,94:529-540. doi: 10.1080/00218464.2017.1301255
    [16]
    段瑛涛, 武肖鹏, 王智文, 等. 碳纤维增强树脂复合材料-热成型钢超混杂层合板层间力学性能[J]. 复合材料学报, 2020, 37(10):2418-2427.

    DUAN Y T, WU X P, WANG Zhiwen, et al. Interlaminar mechanical properties of carbon fiber reinforced plastics-thermoformed steel super-hybrid laminates[J]. Acta Materiae Compositae Sinica,2020,37(10):2418-2427(in Chinese).
    [17]
    LIU W, ZHENG Y, HU X, et al. Interfacial bonding enhancement on the epoxy adhesive joint between engineered bamboo and steel substrates with resin pre-coating surface treatment[J]. Wood Science and Technology,2019,53:785-799. doi: 10.1007/s00226-019-01109-9
    [18]
    SALEEMA N, SARKER DK, PAYNTER R W, et al. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications[J]. Applied Surface Science,2012,261:742-748. doi: 10.1016/j.apsusc.2012.08.091
    [19]
    ZAIN N M, AHMAD S H, ALI E S. Effect of surface treatments on the durability of green polyurethane adhesive bonded aluminium alloy[J]. International Journal of Adhesion and Adhesives,2014,55:43-55. doi: 10.1016/j.ijadhadh.2014.07.007
    [20]
    TAN B, JI Y, HU Y, et al. Pretreatment using diluted epoxy adhesive resin solution for improving bond strength between steel and wood surfaces[J]. International Journal of Adhesion and Adhesives,2019,98:102502.
    [21]
    WANG B, BAI Y, HU X, et al. Enhanced epoxy adhesion between steel plates by surface treatment and CNT/short-fibre reinforcement[J]. Composites Science and Technol-ogy,2016,127:149-157. doi: 10.1016/j.compscitech.2016.03.008
    [22]
    SHI S, SUN Z, HU X, et al. Carbon-fiber and aluminum-honeycomb sandwich composites with and without Kevlar-fiber interfacial toughening[J]. Composites Part A: Applied Science and Manufacture,2014,67:102-110. doi: 10.1016/j.compositesa.2014.08.017
    [23]
    SUN Z, HU X, CHEN H. Effects of aramid-fibre toughening on interfacial fracture toughness of epoxy adhesive joint between carbon-fibre face sheet and aluminium substrate[J]. International Journal of Adhesion and Adhe-sives,2014,48:288-294. doi: 10.1016/j.ijadhadh.2013.09.023
    [24]
    ZHANG Z, SHAN J G, TAN X H, et al. Effect of anodizing pretreatment on laser joining CFRP to aluminum alloy A6061[J]. International Journal of Adhesion and Adhe-sives,2016,70:142-151. doi: 10.1016/j.ijadhadh.2016.06.007
    [25]
    ALIASGHARI S, SKELDON P, ZHOU X, et al. Effect of an anodizing pre-treatment on AA 5052 alloy/polypropylene joining by friction stir spot welding[J]. Materials Science and Engineering: B,2019,245:107-112. doi: 10.1016/j.mseb.2019.05.018
    [26]
    XU Y, LI H, SHEN Y, et al. Improvement of adhesion performance between aluminum alloy sheet and epoxy based on anodizing technique[J]. International Journal of Adhesion and Adhesives,2016,70:74-80. doi: 10.1016/j.ijadhadh.2016.05.007
    [27]
    SAEEDIKHANI M, JAYIDI M, YAZDANI A. Anodizing of 2024-T3 aluminum alloy in sulfuric-boric-phosphoric acids and its corrosion behavior[J]. Transactions of Nonferrous Metals Society of China,2013,23:2551-2559. doi: 10.1016/S1003-6326(13)62767-3
    [28]
    程飞, 蒋宏勇. 基于芳纶pulp优化的碳纤维增强树脂基复合材料的抗损伤性能及残余抗压强度研究[J]. 复合材料学报, 2021, 38(11):3610-3619.

    CHENG F, JIANG H Y. Research on damage resistance and residual compressive strength of carbon fiber reinforced plastic optimized by aramid pulp[J]. Acta Materiae Compositae Sinica,2021,38(11):3610-3619(in Chinese).
    [29]
    JIN K, WANG H, TAO J, et al. Interface strengthening mechanisms of Ti/CFRP fiber metal laminate after adding MWCNTs to resin matrix[J]. Composites Part B: Engineering,2019,171:254-263. doi: 10.1016/j.compositesb.2019.05.005
    [30]
    HUNG P, LAU K, QIAO K, et al. Property enhancement of CFRP composites with different graphene oxide employment methods at a cryogenic temperature[J]. Composites Part A: Applied Science and Manufacture,2019,120:56-63. doi: 10.1016/j.compositesa.2019.02.012
    [31]
    KARA M, KIRICI M, TATER A C, et al. Impact behavior of carbon fiber/epoxy composite tubes reinforced with multi-walled carbon nanotubes at cryogenic environment[J]. Composites Part B: Engineering,2018,145:145-154. doi: 10.1016/j.compositesb.2018.03.027
    [32]
    CHENG F, HU Y, ZHANG X, et al. Adhesive bond strength enhancing between carbon fiber reinforced polymer and aluminum substrates with different surface morphologies created by three sulfuric acid solutions[J]. Composites Part A: Applied Science and Manufacture,2021,146:106427. doi: 10.1016/j.compositesa.2021.106427
    [33]
    GOUSHEGIR S M, SCHARNAGL N, SANTOS J F, et al. XPS analysis of the interface between AA2024-T3/CF-PPS friction spot joints[J]. Surface and Interface Analysis,2016,48:706-711. doi: 10.1002/sia.5816
    [34]
    LI X, HUFNAGEL S, XU H Y, et al. Aluminum (oxy)hydroxide nanosticks synthesized in bicontinuous reverse microemulsion have potent vaccine adjuvant activity[J]. ACS Applied Materials & Interfaces,2017,9:22893-22901.
    [35]
    UHART A, LEDEUIL J B, GONBEAU D, et al. An auger and XPS survey of cerium active corrosion protection for AA2024-T3 aluminum alloy[J]. Applied Surface Science,2016,390:751-759. doi: 10.1016/j.apsusc.2016.08.170
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (1210) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return