XU Hao, SHA Ganggang, LI Tengteng, et al. Structure damage identification method of inverse finite element method-pseudo-excitation method based on 2D continuous wavelet transform and data fusion technology[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3564-3572. DOI: 10.13801/j.cnki.fhclxb.20210115.001
Citation: XU Hao, SHA Ganggang, LI Tengteng, et al. Structure damage identification method of inverse finite element method-pseudo-excitation method based on 2D continuous wavelet transform and data fusion technology[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3564-3572. DOI: 10.13801/j.cnki.fhclxb.20210115.001

Structure damage identification method of inverse finite element method-pseudo-excitation method based on 2D continuous wavelet transform and data fusion technology

More Information
  • Received Date: October 07, 2020
  • Accepted Date: January 03, 2021
  • Available Online: January 14, 2021
  • The two-dimensional continuous wavelet transform (2D-CWT) and data fusion technique to enhance the noise immunity and engineering applicability of the framework of damage called iFEM-PE method which combines the inverse finite element method (iFEM) and pseudo-excitation method (PE) to identify damage were introduced. The example analyses show that iFEM can reconstruct the structural displacement accurately in real time with the finite strain measurement data, which makes the PE method get rid of the dependence of online displacement measurement. On the other hand, PE method has high sensitivity to structural damage, which is suitable for accurate location and quantification of damage. Because the iFEM-PE method is sensitive to the noise, 2D-CWT can realize joint signal analysis in time and frequency domain, strengthen damage characteristics and suppress noise. Moreover, data fusion technology effectively improves the applicability and stability of damage identification through the comprehensive processing of damage identification results under different working conditions. The results show that the above methods can accurately locate the delamination damage of composite structures under the influence of noise.
  • [1]
    TAKEDA S I, AOKI Y, et al. Damage monitoring of CFRP stiffened panels under compressive load using FBG sensors Composite Structures,2012,94(3):813-819. DOI: 10.1016/j.compstruct.2011.02.020
    [2]
    ZOU Y, TONG L, STEVEN G. Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures-A review Journal of Sound & Vibration,2000,230(2):357-378.
    [3]
    YANG Z, LIU K, ZHOU K, et al. Investigation of thermo-acoustoelastic guided waves by semi-analytical finite element method Ultrasonics,2020,106:106141. DOI: 10.1016/j.ultras.2020.106141
    [4]
    WU Z, YANG Z, ZHANG J, et al. Acoustoelastic guided wave propagation in axial stressed arbitrary cross-section Smart Materials and Structures,2018,28(4):045013.
    [5]
    张佳奇, 陈铎, 郑跃滨, 等. 基于压电传感器的树脂基复合材料固化过程监测[J]. 复合材料学报, 2020, 37(11):2776-2781.

    ZHANG Jiaqi, CHEN Duo, ZHENG Yuebin, et al. Piezoelectric transducers based curing monitoring of resin matrix composites Acta Materiae Compositae Sinica,2020,37(11):2776-2781(in Chinese).
    [6]
    FARRAR C R, DOEBLING S W, et al. Vibration-based structural damage identification Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences,2001.
    [7]
    FAN W, QIAO P. Vibration-based damage identification methods: A review and comparative study Structural Health Monitoring,2011,9(1):83-111.
    [8]
    LEE Y S, CHUNG M J. A study on crack detection using eigenfrequency test data Computers & Structures,2000,77(3):327-342.
    [9]
    ALVANDI A, CREMONA C. Assessment of vibration-based damage identification techniques Journal of Sound and Vibration,2006,292(1-2):179-202. DOI: 10.1016/j.jsv.2005.07.036
    [10]
    YAM L H, YAN Y J, JIANG J S. Vibration-based damage detection for composite structures using wavelet transform and neural network identification Composite Structures,2003,60(4):403-412. DOI: 10.1016/S0263-8223(03)00023-0
    [11]
    XU H, CHENG L, SU Z, et al. Identification of structural damage based on locally perturbed dynamic equilibrium with an application to beam component Journal of Sound and Vibration,2011,330(24):5963-5981. DOI: 10.1016/j.jsv.2011.07.028
    [12]
    XU H, CHENG L, SU Z, et al. Damage visualization based on local dynamic perturbation: Theory and application to characterization of multi-damage in a plane structure Journal of Sound and Vibration,2013,332(14):3438-3462. DOI: 10.1016/j.jsv.2013.01.033
    [13]
    XU H, SU Z, CHENG L, et al. A “Pseudo-excitation” approach for structural damage identification: From “Strong” to “Weak” modality Journal of Sound and Vibration,2015:181-198.
    [14]
    XU H, SU Z, CHENG L, et al. Reconstructing interfacial force distribution for identification of multi-debonding in steel-reinforced concrete structures using noncontact laser vibrometry Structural Health Monitoring-An International Journal,2013:507-521.
    [15]
    TESSLER A, SPANGLER J L. A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and shells Computer Methods in Applied Mechanics and Engineering,2005,194(2):327-339.
    [16]
    KEFAL A, MAYANG J B, OTERKUS E, et al. Three dimensional shape and stress monitoring of bulk carriers based on iFEM methodology Ocean Engineering,2018:256-267.
    [17]
    KEFAL A, OTERKUS E. Displacement and stress monitoring of a Panamax containership using inverse finite element method Ocean Engineering,2016,119:16-29.
    [18]
    KEFAL A, OTERKUS E. Displacement and stress monitoring of a chemical tanker based on inverse finite element method Ocean Engineering,2016,112:33-46.
    [19]
    CERRACCHIO P, GHERLONE M, TESSLER A, et al. Real-time displacement monitoring of a composite stiffened panel subjected to mechanical and thermal loads Meccanica,2015,50(10):2487-2496. DOI: 10.1007/s11012-015-0146-8
    [20]
    ZHAO Y, DU J, BAO H, et al. Optimal sensor placement based on eigenvalues analysis for sensing deformation of wing frame using iFEM Sensors,2018,18(8):2424. DOI: 10.3390/s18082424
    [21]
    孙哲, 王建锋, 王静, 等. 基于时空变中值滤波的随机噪声压制方法[J]. 石油地球物理勘探, 2016, 51(6): 1094-1102.

    SUN Zhe, WANG Jianfeng, WANG Jing, et al. Random noise suppression method based on spatiotemporal bimodal median filter[J]. Oil Geophysical Prospecting, 2016, 51(6): 1094-1102(in Chinese).
    [22]
    廖立坚, 杨新安, 叶培旭, 等. 基于时空域的探地雷达杂波的去除[J]. 勘察科学技术, 2008, 153(3):59-61. DOI: 10.3969/j.issn.1001-3946.2008.03.015

    LIAO Lijian, YANG Xinan, YE Peixu, et al. Ground penetrating radar clutter clutter removal based on space-time domain Site Investigation Science and Technology,2008,153(3):59-61(in Chinese). DOI: 10.3969/j.issn.1001-3946.2008.03.015
    [23]
    黄敏, 朱德兵, 郭政学, 等. 连续小波变换在探地雷达信号分析中的应用研究[J]. 物探化探计算技术, 2012, 34(5):593-598.

    HUANG Min, ZHU Debing, GUO Zhengxue, et al. Application of continuous wavelet transform in ground penetrating radar signal analysis Computing Techniques for Geophysical and Geochemical Exploration,2012,34(5):593-598(in Chinese).
    [24]
    ANTOINE J P, MURENZI R, VANDERGHEYNS T P, et al. Two-dimensional wavelets and their relatives[M]. Cambridge: Cambridge University Press, 2004.
    [25]
    BISKRI S, ANTOINE J P, INHESTER B, et al. Extraction of solar coronal magnetic loops with the directional 2D morlet wavelet transform Solar Physics,2010,262(2):373-385. DOI: 10.1007/s11207-010-9533-4
  • Related Articles

    [1]WANG Heng, FENG Shuyue, HU Junhao, LIU Mengzhu, WANG Yongpeng. Progress in the structural design and properties of Ti3C2Tx-based electromagnetic shielding composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3404-3426. DOI: 10.13801/j.cnki.fhclxb.20231220.004
    [2]LI Mingzhan, LI En, PAN Yamin, LIU Xianhu. Research and application of electromagnetic shielding conductive coating[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 572-591. DOI: 10.13801/j.cnki.fhclxb.20230530.003
    [3]FAN Kefan, LI Kun, YANG Zhijian, CHENG Jue, ZHANG Junying. Preparation of dual-network MXene hydrogels and their electromagnetic and UV shielding properties[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3939-3949. DOI: 10.13801/j.cnki.fhclxb.20220907.005
    [4]LI Hao, WANG Yaping, YAN Linping, ZHONG Rui, LIAO Xuepin, SHI Bi. Preparation and performance of cesium iodide/natural leather wearable X-ray shielding composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3852-3861. DOI: 10.13801/j.cnki.fhclxb.20220922.005
    [5]SHI Tingting, LIU Dongqing, CHENG Haifeng. Research progress of personal thermal management materials based on infrared radiation regulation[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2480-2494. DOI: 10.13801/j.cnki.fhclxb.20220809.003
    [6]SUN Zhiping, ZHANG Cuiying, CHEN Hongsheng. Microstructure and mechanical behavior of CF-B4C/Al neutron absorbing composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 769-776. DOI: 10.13801/j.cnki.fhclxb.20210529.001
    [7]ZHANG Menghui, MA Zhonglei, MA Jianzhong, LI Xing, ZHAI Bingyan, SHAO Liang. Research progress of structure design and performance of polymer-based electromagnetic shielding composites[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1358-1370. DOI: 10.13801/j.cnki.fhclxb.20201208.003
    [8]YANG Mingcheng, ZHONG Lei, ZHU Derong, LI Zhaopeng, WU Guozhong. γ-ray radiation effect on properties of CF PTFE/PA6 composites[J]. Acta Materiae Compositae Sinica, 2011, 28(4): 7-11.
    [9]CAO Shuhong, FAN Ziyuan, ZHANG Xiaolu, YAN Qingzhi. Preparation and performance of iron chromium based high temperature infrared radiat coating[J]. Acta Materiae Compositae Sinica, 2011, 28(2): 196-200.
    [10]CHU Zeng-yong, SONG Yong-cai, FENG Chun-xiang, XU Yun-shu, FU Yi-bei. SiC FIBERS WITH A LOW OXYGEN CONTENT PREPARED BY ELECTRON BEAM RADIATION CURING[J]. Acta Materiae Compositae Sinica, 2002, 19(5): 22-27.

Catalog

    Article Metrics

    Article views (1243) PDF downloads (92) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return