Citation: | YANG Wei, ZHOU Guangwei, WANG Kun, et al. Preparation of TiO2 shelled hollow glass microspheres with high reflectivity by hydrothermal method[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3514-3521. DOI: 10.13801/j.cnki.fhclxb.20210105.001 |
[1] |
HU Y, MEI R, AN Z, et al. Silicon rubber/hollow glass microsphere composites: Influence of broken hollow glass microsphere on mechanical and thermal insulation property[J]. Composites Science and Technology,2013,79:64-69.
|
[2] |
RUCKDESCHEL P, PHILIPP A, RETSCH M. Understanding thermal insulation in porous, particulate materials[J]. Advanced Functional Materials,2017,27(38):1702256-1702267. DOI: 10.1002/adfm.201702256
|
[3] |
DONG X, WANG M, TAO X, et al. Properties of heat resistant hollow glass microsphere/phosphate buoyancy materials with different coatings[J]. Ceramics International,2019,46(1):415-420.
|
[4] |
SUN C, PANG H, XUAN S, et al. Glass microspheres strengthened magnetorheological plastomers for sound insulation[J]. Materials Letters,2019,256:126611-126615.
|
[5] |
REN S, LIU J, GUO A, et al. Mechanical properties and thermal conductivity of a temperature resistance hollow glass microspheres/borosilicate glass buoyance material[J]. Materials Science and Engineering: A,2016,674:604-614. DOI: 10.1016/j.msea.2016.08.014
|
[6] |
LI B, YUAN J, AN Z, et al. Effect of microstructure and physical parameters of hollow glass microsphere on insulation performance[J]. Materials Letters,2011,65(12):1992-1994. DOI: 10.1016/j.matlet.2011.03.062
|
[7] |
CUEVAS J C, GARCIA V, FRANCISCO J. Radiative heat transfer[J]. ACS Photonics,2018,5(10):3896-3915.
|
[8] |
HU F, WU S Y, SUN Y G. Hollow-structured materials for thermal insulation.[J]. Advanced materials (Deerfield Beach, Fla.),2019,31(38):1801001-1801007.
|
[9] |
HU Y, ZHONG H, WANG Y H, et al. Development of an antimony doped tin oxide/TiO2 double-layers coated HGM: A high reflectivity and low transmittance building thermal conservation material[J]. Energy Procedia,2017,105:4128-4132. DOI: 10.1016/j.egypro.2017.03.876
|
[10] |
MORALES-LUNA G, CONTRERAS-TELLO H, GARXIA-VALENZUELA A, et al. Experimental test of reflectivity formulas for turbid colloids: Beyond the fresnel reflection amplitudes[J]. The Journal of Physical Chemistry B,2016,120(3):583-595. DOI: 10.1021/acs.jpcb.5b10814
|
[11] |
YUAN J, AN Z, LI B, et al. Facile aqueous synthesis and thermal insulating properties of low-density glass/TiO2 core/shell composite hollow spheres[J]. Particuology, 2012, 10(4):475-479.
|
[12] |
LASKOVA B, ZUKALOYA M, ZUKAL A, et al. Capacitive contribution to Li-storage in TiO2 (B) and TiO2 (anatase)[J]. Journal of Power Sources,2014,246:103-109. DOI: 10.1016/j.jpowsour.2013.07.073
|
[13] |
LIU J, LIN C Y, TZOU W C, et al. Reflection of blue light using Bi-layer Al2O3-TiO2 E-beam coating films[J]. Crystal Growth & Design,2018,18(9):5426-5433.
|
[14] |
LONG J, JIANG C W, ZHU J D, et al. Controlled TiO2 coating on hollow glass microspheres and their reflective thermal insulation properties[J]. Particuology,2020,49:33-39. DOI: 10.1016/j.partic.2019.03.002
|
[15] |
MANICKAM K, MUTHUSAMY V, MANICKAM S, et al. Effect of annealing temperature on structural, morphological and optical properties of nanocrystalline TiO2 thin films synthesized by sol-gel dip coating method[J]. Materials Today: Proceedings,2019,23(1):68-72.
|
[16] |
WIRANWETCHAYAN O, PROMNOPAT S, THONGTEM T, et al. Effect of polymeric precursors on the properties of TiO2 films prepared by sol-gel method[J]. Materials Chemistry and Physics,2019,240:122219-122227.
|
[17] |
JINYEONG S, MINSANG S, DESHMUKH P R, et al. Preparation of ultrathin TiO2 coating on boron particles by thermal chemical vapor deposition and their oxidation-resistance performance[J]. Journal of Alloys & Compounds,2018,767:924-931.
|
[18] |
MA D, ZHU L, LIU B. Hydrothermally grown uniform TiO2 coatings on ZrO2 fibers and their infrared reflective and thermal conductive properties[J]. Ceramics International,2019,46(3):3400-3405.
|
[19] |
NESHCHIMENKO V V, LI C D, MIKHAILOV M M. Radiation stability of TiO2 hollow particles pigments and coatings synthesis by hydrothermal methods from TTIP[J]. Dyes & Pigments,2017,145:354-358.
|
[20] |
SHANDILYA M, RAI R, SINGH J. Review: Hydrothermal technology for smart materials[J]. Advances in Applied Ceramics,2016,115(6):1-23.
|
[21] |
PRATHAN A, SANGLAO J, WANG T, et al. Controlled structure and growth mechanism behind hydrothermal growth of TiO2 nanorods[J]. Scientific Reports,2020,10(1):8065.
|
1. |
朱思雨,张巧君,洪智亮,荆开开,管皞阳,程赞粼,刘永胜,王波,张程煜. 平纹编织SiCf/SiC复合材料的中温蠕变断裂时间及损伤机制. 复合材料学报. 2023(01): 464-471 .
![]() | |
2. |
伍洋,谭方关,李亚伟,贺铸. 铁水包底砌筑结构对应力分布的影响. 钢铁研究学报. 2023(07): 801-810 .
![]() | |
3. |
焦健,孙世杰,焦春荣,杨金华,杨瑞,刘虎. SiC_f/SiC复合材料涡轮导向叶片研究进展. 复合材料学报. 2023(08): 4342-4354 .
![]() | |
4. |
孟繁夫,于明星,谭志勇,王一凡,张宏宇. 涂层初始缺陷诱导的C/SiC复合材料氧化损伤行为预测. 复合材料学报. 2023(10): 5957-5966 .
![]() |