YANG Wei, ZHOU Guangwei, WANG Kun, et al. Preparation of TiO2 shelled hollow glass microspheres with high reflectivity by hydrothermal method[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3514-3521. DOI: 10.13801/j.cnki.fhclxb.20210105.001
Citation: YANG Wei, ZHOU Guangwei, WANG Kun, et al. Preparation of TiO2 shelled hollow glass microspheres with high reflectivity by hydrothermal method[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3514-3521. DOI: 10.13801/j.cnki.fhclxb.20210105.001

Preparation of TiO2 shelled hollow glass microspheres with high reflectivity by hydrothermal method

More Information
  • Received Date: October 25, 2020
  • Accepted Date: December 24, 2020
  • Available Online: January 04, 2021
  • The high-reflectivity anatase TiO2 shell HGM (HGM@TiO2) was prepared by hydrothermal synthesis method, using tetrabutyl titanate, hydrochloric acid, deionized water, hollow glass microspheres (HGM) as raw materials and ethanol as solvent. SEM, EDS, FTIR, XRD, UV-VIS-NIR, thermal conductivity meter were used to study the effect of the amount of tetrabutyl titanate on the surface morphology, surface chemical composition, phase structure, reflection performance, and thermal conductivity of the microspheres. The results show that: The anatase TiO2 is successfully coated on the surface of HGM, the coating morphology is complete and uniform, and the coating thickness becomes thicker with the increase of the amount of titanium source; Compared with the original HGM, the thermal conductivity of HGM@TiO2 has a slight increase, and the maximum increase is only 0.007 W/(m·K), which proves that the coating of TiO2 has little effect on the thermal insulation performance of HGM. The spectral reflectance of the coated HGM has been greatly improved in the visible and near-infrared bands, with a maximum increase of 13%, and the highest reflectance of HGM@TiO2 has reached more than 90%.
  • [1]
    HU Y, MEI R, AN Z, et al. Silicon rubber/hollow glass microsphere composites: Influence of broken hollow glass microsphere on mechanical and thermal insulation property[J]. Composites Science and Technology,2013,79:64-69.
    [2]
    RUCKDESCHEL P, PHILIPP A, RETSCH M. Understanding thermal insulation in porous, particulate materials[J]. Advanced Functional Materials,2017,27(38):1702256-1702267. DOI: 10.1002/adfm.201702256
    [3]
    DONG X, WANG M, TAO X, et al. Properties of heat resistant hollow glass microsphere/phosphate buoyancy materials with different coatings[J]. Ceramics International,2019,46(1):415-420.
    [4]
    SUN C, PANG H, XUAN S, et al. Glass microspheres strengthened magnetorheological plastomers for sound insulation[J]. Materials Letters,2019,256:126611-126615.
    [5]
    REN S, LIU J, GUO A, et al. Mechanical properties and thermal conductivity of a temperature resistance hollow glass microspheres/borosilicate glass buoyance material[J]. Materials Science and Engineering: A,2016,674:604-614. DOI: 10.1016/j.msea.2016.08.014
    [6]
    LI B, YUAN J, AN Z, et al. Effect of microstructure and physical parameters of hollow glass microsphere on insulation performance[J]. Materials Letters,2011,65(12):1992-1994. DOI: 10.1016/j.matlet.2011.03.062
    [7]
    CUEVAS J C, GARCIA V, FRANCISCO J. Radiative heat transfer[J]. ACS Photonics,2018,5(10):3896-3915.
    [8]
    HU F, WU S Y, SUN Y G. Hollow-structured materials for thermal insulation.[J]. Advanced materials (Deerfield Beach, Fla.),2019,31(38):1801001-1801007.
    [9]
    HU Y, ZHONG H, WANG Y H, et al. Development of an antimony doped tin oxide/TiO2 double-layers coated HGM: A high reflectivity and low transmittance building thermal conservation material[J]. Energy Procedia,2017,105:4128-4132. DOI: 10.1016/j.egypro.2017.03.876
    [10]
    MORALES-LUNA G, CONTRERAS-TELLO H, GARXIA-VALENZUELA A, et al. Experimental test of reflectivity formulas for turbid colloids: Beyond the fresnel reflection amplitudes[J]. The Journal of Physical Chemistry B,2016,120(3):583-595. DOI: 10.1021/acs.jpcb.5b10814
    [11]
    YUAN J, AN Z, LI B, et al. Facile aqueous synthesis and thermal insulating properties of low-density glass/TiO2 core/shell composite hollow spheres[J]. Particuology, 2012, 10(4):475-479.
    [12]
    LASKOVA B, ZUKALOYA M, ZUKAL A, et al. Capacitive contribution to Li-storage in TiO2 (B) and TiO2 (anatase)[J]. Journal of Power Sources,2014,246:103-109. DOI: 10.1016/j.jpowsour.2013.07.073
    [13]
    LIU J, LIN C Y, TZOU W C, et al. Reflection of blue light using Bi-layer Al2O3-TiO2 E-beam coating films[J]. Crystal Growth & Design,2018,18(9):5426-5433.
    [14]
    LONG J, JIANG C W, ZHU J D, et al. Controlled TiO2 coating on hollow glass microspheres and their reflective thermal insulation properties[J]. Particuology,2020,49:33-39. DOI: 10.1016/j.partic.2019.03.002
    [15]
    MANICKAM K, MUTHUSAMY V, MANICKAM S, et al. Effect of annealing temperature on structural, morphological and optical properties of nanocrystalline TiO2 thin films synthesized by sol-gel dip coating method[J]. Materials Today: Proceedings,2019,23(1):68-72.
    [16]
    WIRANWETCHAYAN O, PROMNOPAT S, THONGTEM T, et al. Effect of polymeric precursors on the properties of TiO2 films prepared by sol-gel method[J]. Materials Chemistry and Physics,2019,240:122219-122227.
    [17]
    JINYEONG S, MINSANG S, DESHMUKH P R, et al. Preparation of ultrathin TiO2 coating on boron particles by thermal chemical vapor deposition and their oxidation-resistance performance[J]. Journal of Alloys & Compounds,2018,767:924-931.
    [18]
    MA D, ZHU L, LIU B. Hydrothermally grown uniform TiO2 coatings on ZrO2 fibers and their infrared reflective and thermal conductive properties[J]. Ceramics International,2019,46(3):3400-3405.
    [19]
    NESHCHIMENKO V V, LI C D, MIKHAILOV M M. Radiation stability of TiO2 hollow particles pigments and coatings synthesis by hydrothermal methods from TTIP[J]. Dyes & Pigments,2017,145:354-358.
    [20]
    SHANDILYA M, RAI R, SINGH J. Review: Hydrothermal technology for smart materials[J]. Advances in Applied Ceramics,2016,115(6):1-23.
    [21]
    PRATHAN A, SANGLAO J, WANG T, et al. Controlled structure and growth mechanism behind hydrothermal growth of TiO2 nanorods[J]. Scientific Reports,2020,10(1):8065.
  • Related Articles

    [1]YANG Hongrui, SHI Tingting, ZU Mei, JIA Yan, CHENG Haifeng. Research progress of high UV reflective snow camouflage material[J]. Acta Materiae Compositae Sinica.
    [2]SONG Ruokang, ZHANG Mengshan, DAI Zhen, PAN Zhenxue, HONG Yiqiang, ZHU Yu. Preparation and properties of multi-functional composite integrated with heat-shielding and radar-absorbing[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 271-280. DOI: 10.13801/j.cnki.fhclxb.20230524.001
    [3]XING Mengda, MA Xiangyu, GONG Yuanxun, LV Tong, LI Ce, ZHAO Hongjie. Design and wave absorbing properties of honeycomb with A-type skin[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1180-1185. DOI: 10.13801/j.cnki.fhclxb.20210414.003
    [4]WANG Ya'nan, QIAN Jianhua, XING Jinjuan, CHEN Yuxin. Preparation and electrical conductivity of TiO2@SbxSn1-xO2 core-shell composite particles by homogeneous precipitation[J]. Acta Materiae Compositae Sinica, 2019, 36(12): 2920-2931. DOI: 10.13801/j.cnki.fhclxb.20190327.001
    [5]ZHANG Weigang, XUE Lianhai, LIU Yuxi, CHEN Yaxi, ZHANG Ming, XU Guoyue. Preparation and property characterization of heat resistant low near-infrared reflection and 8-14 μm low emissivity composite coatings[J]. Acta Materiae Compositae Sinica, 2017, 34(3): 508-514. DOI: 10.13801/j.cnki.fhclxb.20160511.006
    [6]ZHANG Weigang, XU Guoyue, QIAO Jialiang, DUAN Kaige. Low emissivity at 8 to 14 μm and low near-infrared reflective properties of Al Sm2O3/polyurethane composite coatings[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 436-440.
    [7]FU Wuyou, YANG Haibin, LIU Bingbing, ZOU Guangtian. Preparation and photocatalytic property of anatase TiO2 / MnFe2O4core-shell structure nanoparticles[J]. Acta Materiae Compositae Sinica, 2007, 24(3): 136-140.
    [8]XIE Guohua, ZHANG Zuoguang. BACK REFLECTION CHARACTERISTICS OF LASER ON INFRARED CAMOUFLAGE COATING AND MICROWAVE ABSORBING COATING[J]. Acta Materiae Compositae Sinica, 2004, 21(5): 93-97.
    [9]SUN Yanfeng, HUANG Yudong, WANG Chao, LIU Li. MEASUREMENTS OF THE QUALITY STANDARD OF GLASS-FIBER REINFORCED PHENOLIC RESIN PREPREG USING NEAR INFRARED SPECTROSCOPY REFLECTANCE TECHNIQUE[J]. Acta Materiae Compositae Sinica, 2003, 20(4): 107-110.
    [10]Yongxue Gan, Fenghong Wang, Pay Yih, C. Q. Chen. PERMEABILITY AND PERMITTIVITY MEASUREMENT AND REFLECTIVITY CALCULATION FOR MICROWAVE ABSORBING COMPOSITE MATERIAL CONTAINNING RESONATOR AND ELECTROMAGNETIC LOSSY SUBSTANCE[J]. Acta Materiae Compositae Sinica, 1993, 10(4): 103-108134.
  • Cited by

    Periodical cited type(4)

    1. 朱思雨,张巧君,洪智亮,荆开开,管皞阳,程赞粼,刘永胜,王波,张程煜. 平纹编织SiCf/SiC复合材料的中温蠕变断裂时间及损伤机制. 复合材料学报. 2023(01): 464-471 . 本站查看
    2. 伍洋,谭方关,李亚伟,贺铸. 铁水包底砌筑结构对应力分布的影响. 钢铁研究学报. 2023(07): 801-810 .
    3. 焦健,孙世杰,焦春荣,杨金华,杨瑞,刘虎. SiC_f/SiC复合材料涡轮导向叶片研究进展. 复合材料学报. 2023(08): 4342-4354 . 本站查看
    4. 孟繁夫,于明星,谭志勇,王一凡,张宏宇. 涂层初始缺陷诱导的C/SiC复合材料氧化损伤行为预测. 复合材料学报. 2023(10): 5957-5966 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (1524) PDF downloads (79) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return