LIU Miaoyan, LU Jun, MING Pan, et al. Effect of fatigue load on damage and fracture properties of rubber concrete[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1594-1603. DOI: 10.13801/j.cnki.fhclxb.20200723.004
Citation: LIU Miaoyan, LU Jun, MING Pan, et al. Effect of fatigue load on damage and fracture properties of rubber concrete[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1594-1603. DOI: 10.13801/j.cnki.fhclxb.20200723.004

Effect of fatigue load on damage and fracture properties of rubber concrete

More Information
  • Received Date: May 20, 2020
  • Accepted Date: July 12, 2020
  • Available Online: July 23, 2020
  • Although rubber concrete has better properties of plasticity and fatigue, due to the incorporation of rubber, its dispersion increases under fatigue load and the damage process and the ultimate fracture mechanism are not clear. In order to study the damage and fracture performance of rubber concrete under fatigue load, the three-point bending fatigue fracture test of concrete with different rubber contents under fatigue load based on acoustic emission was carried out. The effective crack length a was calculated and the change law of the crack length a of the rubber concrete with different rubber contents under the fatigue load was analyzed. The crack length ac and the acoustic emission cumulative energy EAE were used to define the damage variables Da and DAE.The variation law of the fracture energy GF of the rubber concrete with different rubber contents under the fatigue load and the law of the occurrence and propagation of cracks in the rubber concrete under the fatigue load were analyzed using the signal duration in the acoustic emission. The results show that the fracture energy of the concrete increases linearly with the increase of the rubber content. Under the fatigue load, both a and Da change in an inverted S-shaped law, while DAE shows a positive S-shaped law; The duration of the acoustic emission signal shows that the cracks in the rubber concrete always appear or expand when the load is small under the fatigue load.
  • [1]
    SIDDIKA A, AL-MAMUN M A, ALYOUSEF R, et al. Properties and utilizations of waste tire rubber in concrete: A review[J]. Construction and Building Materials,2019,224:711-731. DOI: 10.1016/j.conbuildmat.2019.07.108
    [2]
    HAN Q H, YANG G, XU J. Experimental study on the relationship between acoustic emission energy and fracture energy of crumb rubber concrete[J]. Structural Control and Health Monitoring,2018,25(10):e2240.
    [3]
    KHALIL E, ABD-ELMOHSEN M, ANWAR A M. Impact resistance of rubberized self-compacting concrete[J]. Water Science,2015,29(1):45-53. DOI: 10.1016/j.wsj.2014.12.002
    [4]
    YUNG W H, YUNG L C, HUA L H. A study of the durability properties of waste tire rubber applied to self-compacting concrete[J]. Construction and Building Materials,2013,41:665-672.
    [5]
    NABILAH A B, NOAMAN N M R, NASIR N A M, et al. Experimental evaluation of flexural behaviour of rubberized concrete beam[J]. Asian Journal of Civil Engineering,2019,20(7):999-1005. DOI: 10.1007/s42107-019-00159-5
    [6]
    FENG W, LIU F, YANG F, et al. Experimental study on dynamic split tensile properties of rubber concrete[J]. Construction and Building Materials,2018,165:675-687.
    [7]
    LIU F, ZHENG W, LI L, et al. Mechanical and fatigue performance of rubber concrete[J]. Construction and Building Materials,2013,47:711-719.
    [8]
    ZHU X Y, CHEN X D, LIU S S, et al. Experimental study on flexural fatigue performance of rubberised concrete for pavement[J]. International Journal of Pavement Engineering,2020,21(9):1135-1146. DOI: 10.1080/10298436.2018.1521971
    [9]
    CHEN C, CHEN X, ZHANG J. Experimental study on flexural fatigue behavior of self-compacting concrete with waste tire rubber[J]. Mechanics of Advanced Materials and Structures,2019(6):1-12. DOI: 10.1080/15376494.2019.1701152
    [10]
    蒋咏秋. 美国复合材料力学的发展动向[J]. 复合材料学报, 1985, 2(1):101-106.

    JIANG Yongqiu. Recent advances of mechanics of composites in the united states[J]. Acta Materiae Compositae Sinica,1985,2(1):101-106(in Chinese).
    [11]
    SHAH S G, KISHEN J M C. Fracture behavior of concrete-concrete interface using acoustic emission technique[J]. Engineering Fracture Mechanics,2010,77(6):908-924. DOI: 10.1016/j.engfracmech.2010.01.018
    [12]
    罗素蓉, 陈伟妹, 王雪芳. 橡胶自密实混凝土断裂性能试验研究[J]. 水利学报, 2015, 46(2):217-222.

    LUO Surong, CHEN Weimei, WANG Xuefang. Fracture properties of rubberized self-compacting concrete[J]. Journal of Hydraulic Engineering,2015,46(2):217-222(in Chinese).
    [13]
    曹国瑞, 王娟, 卿龙邦, 等. 橡胶混凝土断裂性能试验研究[J]. 土木建筑与环境工程, 2018, 40(6):94-100.

    CAO Guorui, WANG Juan, QING Longbang, et al. Experimental study o the fracture characteristics of crumb rubber concrete[J]. Journal of Civil, Architectural & Environmental Engineering,2018,40(6):94-100(in Chinese).
    [14]
    WANG C, ZHANG Y, MA A. Investigation into the fatigue damage process of rubberized concrete and plain concrete by AE analysis[J]. Journal of Materials in Civil Engineering,2011,23(7):953-960. DOI: 10.1061/(ASCE)MT.1943-5533.0000257
    [15]
    SHAN Z, YU Z, LI X, et al. A damage model for concrete under fatigue loading[J]. Applied Sciences,2019,9(13):2768. DOI: 10.3390/app9132768
    [16]
    中华人民共和国国家发展和改革委员会. 水工混凝土断裂试验规程: DL/T 5332—2005[S]. 北京: 中国电力出版社, 2006.

    National Development and Reform Commission. Norm for fracture test of hydraulic concrete: DL/T 5332—2005[S]. Beijing: China Power Press, 2006(in Chinese).
    [17]
    彭晨. 带预制裂纹混凝土疲劳损伤研究及寿命预测[D]. 武汉: 武汉理工大学, 2013.

    PENG Chen. Fatigue damage and life prediction of prefabricated crack concrete[D]. Wuhan: Wuhan University of Technology, 2013(in Chinese).
    [18]
    GUO Y, CHEN X, LI X, et al. Experimental study on fracture behavior of three-graded concrete under cyclic loading after initial static loading[J]. Theoretical and Applied Fracture Mechanics,2019,103:102272. DOI: 10.1016/j.tafmec.2019.102272
    [19]
    CARPINTERI A, LACIDOGNA G, CORRADO M, et al. Cracking and crackling in concrete-like materials: A dynamic energy balance[J]. Engineering Fracture Mechanics,2016,155:130-144. DOI: 10.1016/j.engfracmech.2016.01.013
    [20]
    LU Y Y, LI Z J. Study of the relationship between concrete fracture energy and AE signal energy under uniaxial compression[J]. Journal of Materials in Civil Engineering,2012,24(5):538-547. DOI: 10.1061/(ASCE)MT.1943-5533.0000418
    [21]
    吴香国, 韩相默, 徐世烺. 超高性能水泥基复合材料弯拉作用下虚拟应变硬化机制分析[J]. 复合材料学报, 2008, 25(2):129-134. DOI: 10.3321/j.issn:1000-3851.2008.02.022

    WU Xiangguo, HAN Xiangmo, XU Shilang. Pseudo strain hardening model of ultra high performance cementitious composites under flexural loading[J]. Acta Materiae Compositae Sinica,2008,25(2):129-134(in Chinese). DOI: 10.3321/j.issn:1000-3851.2008.02.022
    [22]
    RILEM Technical Committee. FMC 1 Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams[M]//RILEM. Recommendations for the testing and use of constructions materials. E & FN SPON, 1994.
    [23]
    NOORSUHADA M N. An overview on fatigue damage assessment of reinforced concrete structures with the aid of acoustic emission technique[J]. Construction and Building Materials,2016,112:424-439. DOI: 10.1016/j.conbuildmat.2016.02.206
    [24]
    胡少伟, 陆俊, 范向前. 混凝土断裂试验中的声发射特性研究[J]. 水力发电学报, 2011, 30(6):16-19.

    HU Shaowei, LU Jun, FAN Xiangqian. Study on acoustic emission technique for normal concrete fracture test[J]. Journal of Hydroelectric Engineering,2011,30(6):16-19(in Chinese).
    [25]
    KENNEDY J B, NEVILLE A M. Basic statistical methods for engineers and scientists[M]. Scranton International Textbook Co., 1964.
  • Related Articles

    [1]BI Guangze, WANG Boxin, GUO Jiahuan, LU Xinyu, SUN Zhengning, WANG Zihao. Environmental sensitivity during the hydration process of metakaolin-slag geopolymer[J]. Acta Materiae Compositae Sinica.
    [2]LIU Shulong, WANG Yiming, WU Aixiang, ZHANG Minzhe, WANG Zhikai, WU Libo. Leaching behavior and solidification mechanism of red mud composite filling material[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6729-6739. DOI: 10.13801/j.cnki.fhclxb.20230315.001
    [3]KONG Xiangqing, WANG Rongzheng, GAO Wei, ZHANG Tingting, FU Ying, SUN Ruoxi. Effect of graphene surface properties on mechanical properties and microstructure of cement mortar composites[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1637-1648. DOI: 10.13801/j.cnki.fhclxb.20220420.001
    [4]HE Wei, XU Jihang, JIAO Zhinan. Effect of few-layer graphene on the fluidity and mechanical properties of cement paste[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5637-5649. DOI: 10.13801/j.cnki.fhclxb.20211112.001
    [5]XU Yidong, WANG Yao. Regulation mechanism of graphene oxide on creep of cement-based composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4839-4846. DOI: 10.13801/j.cnki.fhclxb.20211101.004
    [6]XU Bo, DING Jie, WANG Bing, YANG Wei, HUANG Zhixiong, WANG Yanbing. Effects of AlB2 on mechanical properties of high silica fiber/ceramicizable phenolic resin composites and their pyrolysis products[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 129-136. DOI: 10.13801/j.cnki.fhclxb.20200619.001
    [7]GUO Bingbing, QIAO Guofu, OU Jinping, LIU Junlong. Chloride transport model for cement-based materials considering ion-cement hydrate interactions[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3526-3533. DOI: 10.13801/j.cnki.fhclxb.20180402.001
    [8]CHEN Shuo, WANG Lijiu. Mechanical properties and reaction products of reactive MgO modified circulating fluidized bed combustion slag-silica fume composites[J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1288-1297. DOI: 10.13801/j.cnki.fhclxb.20170808.002
    [9]WEI Ya, GAO Xiang, LIANG Siming. Nanoindentation-based study of the microstructure and degree of hydration in hardened cement paste[J]. Acta Materiae Compositae Sinica, 2017, 34(5): 1122-1129. DOI: 10.13801/j.cnki.fhclxb.20160711.007
    [10]LI Chun-jiang, YANG Qing-sheng. Micro-mechanical model and property evolution for hydration of cements[J]. Acta Materiae Compositae Sinica, 2006, 23(1): 117-123.
  • Cited by

    Periodical cited type(7)

    1. 刘瑜,盛德星,王辉,王玲,李茜,胡涛,李永. 紫外-冷凝老化对碳纤维/环氧树脂复合材料性能的影响. 装备环境工程. 2025(01): 196-202 .
    2. 肖瀚瑶,张勇,王安东,樊伟杰. SO_2盐雾与冲击载荷交替作用下AerMet100钢损伤研究. 装备环境工程. 2025(02): 1-11 .
    3. 秦国锋,秦旺招,糜沛纹,李铭,范秋寒. 复合材料在湿-热-载荷作用下的加速老化与自然老化研究综述. 交通运输工程学报. 2024(05): 173-194 .
    4. 张柱柱,陈跃良,姚念奎,卞贵学,张勇,张杨广. 冲击载荷作用下38CrMoAl渗氮钢损伤机理和耐腐蚀性能. 航空学报. 2021(05): 199-210 .
    5. 王安东,卞贵学,张勇,陈跃良,张柱柱,张杨广. 海洋环境下G814/3233复合材料的老化机理及加速老化与自然老化的相关性. 航空学报. 2021(05): 250-262 .
    6. 张勇,王安东,陈跃良,樊伟杰,马瑞民. CF8611/AC531复合材料的实验室加速老化行为研究. 装备环境工程. 2020(05): 116-121 .
    7. 高超干,周储伟. 复合材料环境当量等效加速老化试验方法. 工程塑料应用. 2020(08): 103-107+117 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (1346) PDF downloads (73) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return