为研发低碳、节能、性能优异的麻纤维增强树脂绿色复合材料并扩展其应用领域,本文采用团队发明的氨基硅油乳液对黄麻纤维(JF)进行表面改性,运用开炼-注塑成型复合工艺研制了纤维含量为10wt%~25wt%的改性黄麻纤维增强聚丙烯(JF/PP)新型复合材料,系统全面地研究了改性麻纤维含量对JF/PP复合材料力学性能、结晶行为、耐热性能(热变形温度)及热尺寸稳定性(线膨胀系数)的影响规律及相关作用机制,并采用接触角测试分析与SEM技术分析了复合材料界面相容性与结合状态。结果表明:氨基硅油乳液改性JF,增强了JF与PP基体的界面结合力。随着纤维含量的增加,JF/PP复合材料的拉伸和弯曲强度逐渐增加,而冲击强度则有所降低。DSC、热变形温度和线膨胀系数测试分析表明,添加改性JF能够促进PP异相成核,并限制PP分子链的运动能力,从而提高JF/PP复合材料的耐热性能,且随着纤维含量增加,耐热性能呈不断上升趋势。当改性JF含量为25wt%时,JF/PP复合材料的热变形温度为142.5℃,较纯PP提高了53.5%。同时,复合材料平均线膨胀系数随纤维含量增加而明显降低,表明复合材料的热尺寸稳定性显著提高。相比纯PP,含量为25wt%时的复合材料的平均线膨胀系数在平行流道方向下降了73.2%,垂直流道方向则下降了14.4%,存在各向异性。纤维含量为15wt%和20wt%时,改性JF/PP综合力学和热性能相对更优。
导热复合材料在电子封装、电机材料、电池以及换热设备等领域具有广泛的应用价值。聚偏氟乙烯 (PVDF) 具有优异的电气性能、良好的机械强度和耐高温性能,是应用于电子电器、航空航天等行业的理想材料之一,但较低的导热率制约其进一步发展,因而以PVDF为基体的导热复合材料的开发成为该领域研究的重点。研究PVDF复合材料导热性能的目的是探究该材料的导热特性,以进一步了解其在导热领域的应用潜力。了解PVDF复合材料导热特性的基本原理和机制,探索改善PVDF复合材料导热性能的方法和策略,评估不同添加剂或改性方法对导热性能的影响,从而更好地拓展PVDF复合材料在导热领域的应用。
采用对PVDF复合材料采用横向整理热导率发展水平,纵向分析提升导热性能的基本途径的方法。通过制备不同组分和结构的PVDF复合材料,并使用热传导性能测试技术(如热导率测试)来测量其导热性能。对实验结果的分析和比较,获得关于导热机制和影响因素的实验数据,并进一步了解PVDF复合材料导热特性的基本原理。利用计算方法(如分子动力学模拟、有限元分析等)对PVDF复合材料的结构进行建模和模拟,以预测其导热性能。通过模拟计算可以揭示PVDF复合材料中热传导的机制和路径,有助于理解导热特性的基本原理。基于已有的导热理论和数学模型,对PVDF复合材料的导热特性进行理论分析。通过推导和求解数学方程,可以研究不同因素对导热特性的影响,从而揭示导热机制的基本原理。利用数值模拟和优化算法,结合现有导热性能理论,探索和优化不同方法和策略对PVDF复合材料导热性能的影响。通过对以上手段和方法,将PVDF导热复合材料的填料选择、负载水平、界面工程、制备工艺、表面改性等方面信息进行收集与整理,进行综述。
(1)组分选择:选择填料和添加剂对导热性能有重要影响。常用的填料包括石墨、碳纳米管、金属纳米颗粒等高导热性材料。当这些填料添加到PVDF基体中时,可以形成导热路径,提高导热性能。(2)填料浓度:填料浓度的变化会直接影响PVDF复合材料的导热性能。较高的填料浓度会增加填料之间的接触面积,从而增强热传导。(3)界面相互作用:填料与基体之间的界面相互作用也会影响导热性能。良好的界面相互作用可以促进热能的传递,而界面失效可能会导致热能的反射或散射,从而降低导热性能。(4)网络结构设计:填料的分散性对导热性能起着关键作用。如果填料没有良好的分散性,就会形成聚集体,导致热传导途径的中断和效率的降低。因此,通过合适的处理方法(如超声处理、表面改性等)来提高填料的分散性是非常重要的。
PVDF复合材料导热性能的基本机制涉及填料的导热路径、界面热阻、填料分散性、填料浓度和形貌、聚合物基体热导率、组分相互作用,以及复合材料的结晶度和晶体结构等因素。通过优化这些因素,可以实现对PVDF复合材料导热性能的提升。PVDF复合材料导热性能在电子器件、热管理、纳米复合材料、热传导材料和热感温度传感器等各个领域都具有广泛的应用前景。
导热复合材料在电子封装、电机材料、电池以及换热设备等领域具有广泛的应用价值。聚偏氟乙烯 (PVDF) 具有优异的电气性能、良好的机械强度和耐高温性能,是应用于电子电器、航空航天等行业的理想材料之一,但较低的导热率制约其进一步发展,因而以PVDF为基体的导热复合材料的开发成为该领域研究的重点。目前,关于如何更高效地提升PVDF复合材料的导热性能的系统介绍有待进一步完善,因此本文在前人的研究成果基础上进行综述,旨在深入探讨如何有效提升PVDF复合材料的导热性能。高导热PVDF复合材料的制备关键在于填料种类、复合工艺、结构设计、界面调控等。本文围绕PVDF导热复合材料中复合策略的选择、导热网络的构建以及界面热阻的调控展开介绍。从导热复合材料的组成与结构设计(微观-宏观尺度)、制备工艺与性能优化(局部-整体方面)等角度,综述最新成果,并对其发展趋势进行展望。
导热复合材料在电子封装、电机材料、电池及换热设备等领域具有广泛的应用价值。聚偏氟乙烯 (PVDF) 具有优异的电气性能、良好的机械强度和耐高温性能,是应用于电子电器、航空航天等行业的理想材料之一,但较低的热导率制约其进一步发展,亟待开发PVDF基高导热复合材料。其制备的关键在于如何选择高导热填料、设计导热通路及调控界面热阻。本文在聚合物基导热复合材料的机制、模型、方程及数值模拟等理论知识的基础上,结合PVDF自身晶体结构,介绍目前PVDF基导热复合材料热导率的发展水平,各种填料及制备工艺对其热导率的不同影响程度等内容,从复合策略、网络结构、界面结合等角度综述了高导热PVDF复合材料的最新研究进展。此外,对其未来发展也进行了展望。
麻纤维具有与玻璃纤维相当的比强度和比刚度,同时成本低、来源广泛、绿色天然无污染,因此其增强复合材料有望在汽车、高铁、飞机等运载工具上广泛应用。该类复合材料的力学性能是影响其应用的重要性能,如何快速有效地设计和开发麻纤维增强复合材料以达到所需性能成为该领域的研究的热点。然而,相比于玻璃纤维和碳纤维等人造纤维,植物麻纤维具有更复杂的微观腔体结构。为更准确的预测和调控麻纤维增强树脂基复合材料这一大类复合材料的拉伸性能,本文以苎麻/聚丙烯复合材料为研究对象,开展了基于多尺度模拟法的腔体结构麻纤维增强树脂基复合材料拉伸模量研究。
本文综合混合定律和Micro-CT技术,提出了基于麻纤维腔体结构特征的麻纤维等效弹性模量计算理论公式;运用多尺度模拟法,构建了基于腔体结构的苎麻纤维增强树脂基复合材料(RFPC)的代表性体积元(RVE)模型,并从微/细观多尺度出发,研究求解了复合材料的弹性模量,并通过RFPC拉伸实验结果验证了RVE多尺度建模的有效性与可靠性;采用正交试验法和多项式拟合法探讨并获得了纤维含量、纤维空腔占比、纤维取向和纤维长径比为自变量的麻纤维增强树脂基复合材料弹性模量预测公式,并系统揭示了影响RFPC拉伸模量的纤维参数主效应和参数两两之间的协同效应规律。
采用正交试验法探讨了麻纤维参数(纤维含量、纤维空腔占比、纤维取向张量分量、纤维长径比)对麻纤维增强复合材拉伸模量的影响,并应用极差分析和方差分析明确了影响麻纤维复合材料拉伸模量的麻纤维参数的权重顺序为:纤维含量>纤维长径比>纤维取向张量分量>纤维空腔体积比。获得了拉伸模量最大时的麻纤维参数组合为A4B1C4D4,即纤维含量为20wt%,纤维空腔占比为16vol%,纤维取向张量因子λ1为1.0,纤维长径比为14。采用多项式拟合方法获得了定量预测求解麻纤维增强树脂基复合材料拉伸模量的理论计算公式,通过降维明确了影响复合材料拉伸模量的显著因素,纤维含量和纤维长径比,对复合材料拉伸模量的主效应作用:纤维质量比在时,复合材料拉伸弹性模量随着纤维含量(5-20wt%)和纤维长径比(2-14)的增加而增大;同时进一步通过曲面图直观的理解了纤维参数之间两两协同作用对复合材料拉伸模量的影响规律,其中,纤维含量越高,复合材料弹性模量越大,这是由于纤维的刚度高于基体的刚度。纤维长径比与复合材料的界面多少有关,纤维长径比越大,纤维和基体之间的界面越多,界面可以实现复合材料力的转移和传递,因此纤维长径比越大,复合材料的弹性模量也相应的增加。纤维空腔越大,纤维的刚度相应的减小,使得复合材料的拉伸模量小幅减小。纤维取向张量分量值越接近1,说明纤维长度方向与受力方向越一致,纤维可以承受的力就越大,因此其相应方向的弹性模量值也越大。
本文针对麻纤维腔体结构的微观结构特征,开展了含腔体麻纤维的均匀化等效模型理论研究,以苎麻纤维增强聚丙烯复合材料为研究对象,构建了基于腔体特征的麻纤维增强树脂基复合材料RVE多尺度模型,并开展了不同纤维参数下的复合材料弹性模量预测研究。提出的基于腔体结构的植物麻纤维增强树脂基复合材料弹性模量预测方法,可望为更为准确地预测和调控麻纤维增强树脂基复合材料这一大类复合材料的性能提供新理论和新方法。
麻纤维具有与玻璃纤维相当的比强度和比刚度,同时成本低、来源广泛、绿色天然无污染,因此其增强复合材料有望在汽车、高铁、飞机等运载工具上广泛应用。该类复合材料的力学性能是影响其应用的重要性能,如何快速有效地设计和开发麻纤维增强复合材料以达到所需性能成为该领域的研究的热点。然而,相比于玻璃纤维和碳纤维等人造纤维,植物麻纤维具有更复杂的微观结构,有空腔结构的纤维管胞,每个管胞为厚壁中空结构,由初级细胞壁、次级细胞壁、中空空腔组成。而现有麻纤维复合材料拉伸性能RVE模型在建模过程中却未充分考虑麻纤维的腔体结构特征对麻纤维增强树脂基复合材弹性模量的影响,迫切需要进一步开展基于腔体结构的麻纤维增强复合材料弹性模量预测方法研究,为此,本研究以苎麻纤维增强聚丙烯(PP)复合材料为研究对象,开展基于多尺度模拟法的腔体结构麻纤维增强树脂基复合材料拉伸模量研究。由于各类麻纤维都具有与苎麻纤维类似的腔体结构,本研究可望为更为准确地预测和调控麻纤维增强树脂基复合材料这一大类复合材料的性能提供新理论和新方法。
本研究主要的创新点如下:
(1)综合混合定律和Micro-CT技术,提出了基于麻纤维腔体结构特征的麻纤维等效弹性模量计算理论公式;
(2)运用多尺度模拟法,构建了基于腔体结构的苎麻纤维增强树脂基复合材料(RFPC)的代表性体积元(RVE)模型,并从微/细观多尺度出发,研究求解了复合材料的弹性模量,并通过RFPC拉伸实验结果验证了RVE多尺度建模的有效性与可靠性;
(3)采用正交试验法和多项式拟合法探讨并获得了纤维含量、纤维空腔占比、纤维取向和纤维长径比为自变量的麻纤维增强树脂基复合材料弹性模量预测公式,并系统揭示了影响RFPC拉伸模量的纤维参数主效应和参数两两之间的协同效应规律。本研究提出的基于腔体结构的植物麻纤维增强树脂基复合材料弹性模量预测方法可以推及拓展至麻类纤维增强树脂基一大类复合材料,为预测和调控麻纤维增强树脂基一大类复合材料的拉伸模量提供了新方法。
本研究针对现有植物麻纤维增强复合材料弹性模量预测模型中,未能充分考虑麻纤维独特的腔体微观结构特征,难以准确获取真实纤维特征参数并预测麻纤维增强复合材料弹性模量的现状,综合混合定律和Micro-CT技术,提出了基于麻纤维腔体结构特征的麻纤维等效模型及其弹性模量计算公式。在此基础上,采用多尺度模拟法构建基于腔体结构的苎麻纤维增强树脂基复合材料(RFPC)的代表性体积元(RVE)模型并求解了RFPC的拉伸模量。并通过RFPC拉伸实验测试结果验证了RVE模型的有效性。另一方面,本文采用正交试验设计和方差分析探讨了纤维含量、纤维空腔占比、纤维取向和纤维长径比4个参数对RFPC拉伸弹性模量的影响权重,从而明确了纤维含量和纤维取向是影响复合材料拉伸弹性模量的主要因素。运用多项式拟合法获得了以上述4个参数为自变量的麻纤维增强树脂基复合材料拉伸弹性模量预测公式,并系统揭示了影响RFPC拉伸模量的参数主效应和参数两两之间的协同效应规律。本研究提出的基于腔体结构的植物麻纤维增强树脂基复合材料弹性模量预测方法,可望为麻纤维增强树脂基一大类复合材料的拉伸性能调控提供新方法。