Research progress on thermal conductivity of polyvinylidene fluoride composites
-
摘要: 导热复合材料在电子封装、电机材料、电池及换热设备等领域具有广泛的应用价值。聚偏氟乙烯 (PVDF) 具有优异的电气性能、良好的机械强度和耐高温性能,是应用于电子电器、航空航天等行业的理想材料之一,但较低的热导率制约其进一步发展,亟待开发PVDF基高导热复合材料。其制备的关键在于如何选择高导热填料、设计导热通路及调控界面热阻。本文在聚合物基导热复合材料的机制、模型、方程及数值模拟等理论知识的基础上,结合PVDF自身晶体结构,介绍目前PVDF基导热复合材料热导率的发展水平,各种填料及制备工艺对其热导率的不同影响程度等内容,从复合策略、网络结构、界面结合等角度综述了高导热PVDF复合材料的最新研究进展。此外,对其未来发展也进行了展望。Abstract: Thermal conductive composites have a wide range of applications in the fields of electronic packaging, motor materials, batteries and heat exchange equipment. Polyvinylidene fluoride (PVDF) has excellent electrical properties, good mechanical strength and high temperature resistance. It is one of the ideal materials for applications in electronics, aerospace and other industries. However, the low thermal conductivity restricts its further development. It is urgent to develop PVDF-based high thermal conductivity composites. The key to its preparation is how to select high thermal conductivity fillers, design thermal conduction pathways, and regulate interface thermal resistance. Based on the theoretical knowledge of the mechanism, model, equation and numerical simulation of polymer-based thermal conductive composites, combined with the crystal structure of PVDF, this paper introduces the current development level of thermal conductivity of PVDF-based thermal conductive composites, and the different effects of various fillers and preparation processes on their thermal conductivity. The latest research progress of high thermal conductivity PVDF composites is reviewed from the perspectives of composite strategy, network structure and interface bonding. In addition, its future development is also prospected.
-
图 2 (a) 用于钠离子电池的PVDF/聚丙烯腈(PAN)静电纺隔膜[37];(b) 具有PVDF聚合物堆叠结构的自旋阀装置[38];(c) 基于PVDF开发药物输送载体的工作流程[39];(d) 基于PVDF的可穿戴传感器[40]
Figure 2. (a) PVDF/polyacrylonitrile (PAN) electrospun membrane for sodium ion batteries[37]; (b) Spin valve device with PVDF polymer stacking structure[38]; (c) Workflow of developing drug delivery carriers based on PVDF[39]; (d) PVDF-based wearable sensors[40]
HA—Hyaluronic acid; API-IL—Active pharmaceutical ingredient ionic liquids; H—Magnetic field intensity; I—Electric current; V—Voltage
图 4 (a) 纯PVDF和PVDF复合材料的热扩散率和热导率;(b) 纯PVDF与PVDF复合材料关于热导率增强程度的对比;(c) 纯PVDF、PVDF/富勒烯(SF)、PVDF/CNT和PVDF/石墨烯(GS)复合材料在加热时的红外图像;(d) 纯PVDF、PVDF/SF、PVDF/CNT和PVDF/GS复合材料在加热和冷却时表面温度随时间的变化;(e) 含SF、CNT和GS的PVDF复合材料的热流模型[62]
Figure 4. (a) Thermal diffusivity and thermal conductivity of pure PVDF and PVDF composites; (b) Comparison of thermal conductivity enhancement between pure PVDF and PVDF-based composites materials; (c) Infrared images of pure PVDF, PVDF/superfullerene (SF), PVDF/CNT and PVDF/graphene sheets (GS) composites when heated; (d) Surface temperature of pure PVDF, PVDF/SF, PVDF/CNT and PVDF/GS composites changes with time during heating and cooling; (e) Heat flux model of PVDF composites containing SF, CNT and GS[62]
TCE—Thermal conductivity enhancement; dT/dt—Rate of change of temperature with respect to time
图 5 (a) 溶液共混方法制备MXene/PVDF复合材料示意图[82];(b) 静电纺丝方法制备BN纳米片(BNNS)/PVDF复合薄膜示意图[85]
Figure 5. (a) Schematic diagram of PVDF/MXene composite prepared by solution blending method[82]; (b) Schematic diagram of PVDF/boron nitridenanosheets (BNNS) composite film prepared by electrospinning method[85]
DMF—Dimethylformamide
图 6 (a) PVDF复合材料的初始棒材涂布工艺[99];(b) L形扭结管中熔融压缩溶液浇注PVDF和石墨烯纳米片薄膜[100];(c) 磁场定向控制磁性CNT的取向提高其热导率示意图[101]
Figure 6. (a) Initial bar coating process of PVDF composites[99]; (b) PVDF and graphene nanosheet films were cast by melt-compression solution in an L-shaped kink tube[100]; (c) Magnetic field oriented control of the orientation of magnetic CNT (mCNT) to improve its thermal conductivity[101]
GNF—Graphene nanoflake; PSS—Poly(sodium 4-styrene sulfonate)
图 7 (a) 不同BN纳米片(BNNS)含量的BNNS/PVDF复合材料的热导率;(b) 不同BNNS含量的BNNS@树脂复合材料的热导率;(c) 不同BNNS含量的PVDF/BNNS和BNNS@树脂/PVDF的热导率;(d) 构建导热通道的理论模型;(e) 模拟不同BNNS含量的BNNS/PVDF复合材料的传热过程[111]
Figure 7. (a) Thermal conductivity of PVDF/boron nitride nanosheets (BNNS) composites with different BNNS content; (b) Thermal conductivity of BNNS@resin composites with different BNNS content; (c) Thermal conductivity of PVDF/BNNS and BNNS@resin/PVDF with different BNNS content; (d) Construct the theoretical model of thermal conduction channel; (e) Heat transfer process of PVDF/BNNS composites with different BNNS content was simulated[111]
MS—Melamine-formaldehyde resin sponge
图 8 (a) 单一ZnO填料复合材料的热传导模型;(b) 两种不同尺寸ZnO填料经过杂化而成的复合材料的热传导模型; (c) 3种不同尺寸ZnO填料经过杂化而成的复合材料的热传导模型[113];(d) 室温下,Al/PVDF复合材料的热导率与Al填料 (微米和纳米尺寸下) 的体积比例的关系[88]
Figure 8. (a) Heat conduction model of composites with single filler; (b) Heat conduction model of composites with hybrid fillers of two different sizes; (c) Heat conduction model of composites with hybrid fillers of three different sizes[113]; (d) At room temperature, the relationship between the thermal conductivity of Al/PVDF composites and the volume ratio of Al fillers (micron size and nano size)[88]
λmax—Maximum value of the thermal conductivity; Y—Volume ratio Vmicro∶Vnano
图 9 ((a)~(g)) AlN晶须与球体混合填料的示意图(体积比分别为1:0、6:1、3:1、1:1、1:3、1:6和0:1)[114];(h) PVDF复合材料示意图;(i) 25℃下BaTiO3/PVDF、SiC/PVDF和BaTiO3/SiC/PVDF复合材料的热导率[117]
Figure 9. ((a)-(g)) Schematic diagrams of AlN whisker and sphere mixed fillers with volume ratios of 1:0, 6:1, 3:1, 1:1, 1:3, 1:6 and 0:1, respectively[114]; (h) Schematic diagram of PVDF composite; (i) Thermal conductivity of BaTiO3/PVDF, SiC/PVDF and BaTiO3/SiC/PVDF composites at 25℃[117]
图 10 (a) SiC与BN桥接形成的导热路径[130];(b) 不同填料负载的PVDF复合膜的导热系数[131];(c) PVDF/CNT和PVDF/CNT/氧化石墨烯(GO)复合材料中填料分散状态[133]
Figure 10. (a) Thermal conduction path formed by the network bridging of SiC nanowires and BN nanosheets[130]; (b) Thermal conductivity of PVDF composite membranes loaded with different fillers[131]; (c) Dispersion of fillers in PVDF/CNT and PVDF/CNT/graphene oxide (GO) composites[133]
f-SiC—Functionalized SiC; hBN—Hexagonal BN; POSS—Polyhedral oligomeric silsesquioxane
表 1 具有不同晶型的聚偏氟乙烯(PVDF)晶体的性质[36]
Table 1. Properties of polyvinylidene fluoride (PVDF) crystals with different crystal forms[36]
Category α β γ Molecular conformation TGTG' TTT TTGTTG' Melting point Low Medium High Polarity None Strong Intermediate Electronically active None High
piezo-electric,
ferro-electricIntermediate Elasticity — Greatest — Solvent resistance — — Strong Thermal stability — Weak Strong Radiotolerance — — Strong Category Filler Thermal conductivity/
(W·m–1·K–1)Metallic fillers Ni 158.00 Al 204.00 Au 345.00 Ag 450.00 Cu 483.00 Ceramic fillers Al2O3 30.00 SiC 30.00-270.00 AlN 200.00 BN 250.00-300.00 Carbon fillers Graphite 100.00-400.00 Diamond 2000.00 CNT 2000.00-6000.00 Graphene 4800.00-5300.00 表 3 室温下不同单一填料及成型工艺所制备PVDF复合材料的热导率
Table 3. Thermal conductivity of PVDF composites prepared by different fillers and molding process at room temperature
Filling material type Preparation technology Thermal conductivity/
(W·m–1·K–1)Ag[53] Solution blending 6.50 Zn[54] Solution blending 1.20 Zn@ZnO[87] Solution blending 0.54 Al[88] Melt blending 3.26 Ni[89] Solution blending 1.13 SiC[55] Masterbatch process 1.88 β-SiC[90] Solution blending 1.82 BN[56] Electrostatic spinning 7.29 BNNS[85] Electrostatic spinning 18.33 h-BN[91] Salt template, thermal curing process 1.47 CCB[92] Solution blending 0.44 CNT[93] Melt blending 1.40 Graphene[86] Solvent casting 0.56 GnPs[94] Spray coating, thermal annealing 12.00 MXene[82] Solution blending 0.36 Notes: h-BN—Hexagonal boron nitride; CCB—Conducting carbon black; GnPs—Graphene nanoplatelets. -
[1] MOLINA-JORDÁ J M. Thermal conductivity of metal matrix composites with coated inclusions: A new modelling approach for interface engineering design in thermal management[J]. Journal of Alloys and Compounds,2018,745:849-855. doi: 10.1016/j.jallcom.2018.02.092 [2] MALLIK S, EKERE N, BEST C, et al. Investigation of thermal management materials for automotive electronic control units[J]. Applied Thermal Engineering,2011,31(2-3):355-362. doi: 10.1016/j.applthermaleng.2010.09.023 [3] NIETO A, BISHT A, LAHIRI D, et al. Graphene reinforced metal and ceramic matrix composites: A review[J]. International Materials Reviews,2017,62(5):241-302. doi: 10.1080/09506608.2016.1219481 [4] FLORES O, BORDIA R K, NESTLER D, et al. Ceramic fibers based on SiC and SiCN systems: Current research, development, and commercial status[J]. Advanced Engineering Materials,2014,16(6):621-636. doi: 10.1002/adem.201400069 [5] YU H T, CHEN C, SUN J X, et al. Highly thermally conductive polymer/graphene composites with rapid room-temperature self-healing capacity[J]. Nano-Micro Letters,2022,14(1):135. doi: 10.1007/s40820-022-00882-w [6] PENG L Q, YU H T, CHEN C, et al. Tailoring dense, orientation-tunable, and interleavedly structured carbon-based heat dissipation plates[J]. Advanced Science,2023,10(7):2205962. doi: 10.1002/advs.202205962 [7] YANG X T, GUO Y Q, HAN Y X, et al. Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology[J]. Composites Part B: Engineering,2019,175:107070. doi: 10.1016/j.compositesb.2019.107070 [8] HAN Z D, FINA A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review[J]. Progress in Polymer Science,2011,36(7):914-944. doi: 10.1016/j.progpolymsci.2010.11.004 [9] CHEN H, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science,2016,59:41-85. doi: 10.1016/j.progpolymsci.2016.03.001 [10] GUO Y Q, RUAN K P, SHI X T, et al. Factors affecting thermal conductivities of the polymers and polymer composites: A review[J]. Composites Science and Technology,2020,193:108134. doi: 10.1016/j.compscitech.2020.108134 [11] SOGA K, SAITO T, KAWAGUCHI T, et al. Percolation effect on thermal conductivity of filler-dispersed polymer composites[J]. Journal of Thermal Science and Technology,2017,12(1):000581. [12] LI A, ZHANG C, ZHANG Y. Thermal conductivity of graphene-polymer composites: Mechanisms, properties, and applications[J]. Polymers,2017,9(9):437. doi: 10.3390/polym9090437 [13] ZHANG X, WU K, LIU Y H, et al. Preparation of highly thermally conductive but electrically insulating composites by constructing a segregated double network in polymer composites[J]. Composites Science and Technology,2019,175:135-142. doi: 10.1016/j.compscitech.2019.03.017 [14] KIM J M, JUNG D W, KIM L S, et al. Continuously thermal conductive pathway of bidisperse boron nitride fillers in epoxy composite for highly efficient heat dissipation[J]. Materials Today Communications,2021,27:102230. doi: 10.1016/j.mtcomm.2021.102230 [15] JANG J, NAM H, SO S, et al. Thermal percolation behavior in thermal conductivity of polymer nanocomposite with lateral size of graphene nanoplatelet[J]. Polymers,2022,14(2):323. doi: 10.3390/polym14020323 [16] LI C, GUO H, TIAN X, et al. Transient response for a half-space with variable thermal conductivity and diffusivity under thermal and chemical shock[J]. Journal of Thermal Stresses,2016,40(3):389-401. [17] PAL R. New models for thermal conductivity of particulate composites[J]. Journal of Reinforced Plastics and Composites,2007,26(7):643-651. doi: 10.1177/0731684407075569 [18] LIN F, BHATIA G S, FORD J D. Thermal conductivities of powder-filled epoxy resins[J]. Journal of Applied Polymer Science,1993,49(11):1901-1908. doi: 10.1002/app.1993.070491105 [19] HATTA H, TAYA M, KULACKI F A, et al. Thermal diffusivities of composites with various types of filler[J]. Journal of Composite Materials,1992,26(5):612-625. doi: 10.1177/002199839202600501 [20] LIAO Q W, LIU Z C, LIU W, et al. Extremely high thermal conductivity of aligned carbon nanotube-polyethylene composites[J]. Scientific Reports,2015,5(1):16543. doi: 10.1038/srep16543 [21] GU J W, GUO Y Q, LYU Z Y, et al. Highly thermally conductive POSS-g-SiCp/UHMWPE composites with excellent dielectric properties and thermal stabilities[J]. Composites Part A: Applied Science and Manufacturing,2015,78:95-101. doi: 10.1016/j.compositesa.2015.08.004 [22] XU Z W, CHEN Y R, CHEN X, et al. Enhanced thermal conductivity and electrically insulating of polymer composites[J]. Journal of Materials Science,2021,56(6):4225-4238. doi: 10.1007/s10853-020-05530-5 [23] ZHAO K, LI S S, HUANG M, et al. Remarkably anisotropic conductive MWCNTs/polypropylene nanocomposites with alternating microlayers[J]. Chemical Engineering Journal,2019,358:924-935. doi: 10.1016/j.cej.2018.10.078 [24] WU K, WANG J K, LIN F Q, et al. Modification and characterization of the poly(vinyl chloride)/thermoplastic polyurethane foam composite material[J]. Polymer Composites,2014,35(9):1716-1722. doi: 10.1002/pc.22825 [25] FENG X M, XING W Y, SONG L, et al. TiO2 loaded on graphene nanosheet as reinforcer and its effect on the thermal behaviors of poly(vinyl chloride) composites[J]. Chemical Engineering Journal,2015,260:524-531. doi: 10.1016/j.cej.2014.08.103 [26] KALAJ M, DENNY M S, BENTZ K C, et al. Nylon-MOF composites through postsynthetic polymerization[J]. Angewandte Chemie International Edition,2019,58(8):2336-2340. doi: 10.1002/anie.201812655 [27] YU Y L, CHEN H, LIU Y, et al. Superhydrophobic and superoleophilic porous boron nitride nanosheet/polyvinylidene fluoride composite material for oil-polluted water cleanup[J]. Advanced Materials Interfaces,2015,2(1):1400267. doi: 10.1002/admi.201400267 [28] YU S, HUANG M, HAO R, et al. Recent advances in thermally conductive polymer composites[J]. High Performance Polymers,2022,34(10):1-21. [29] ERDTMAN E, SATYANARAYANA K C, BOLTON K. Simulation of α- and β-PVDF melting mechanisms[J]. Polymer,2012,53(14):2919-2926. doi: 10.1016/j.polymer.2012.04.045 [30] CUI Z L, DRIOLI E, LEE Y M. Recent progress in fluoropolymers for membranes[J]. Progress in Polymer Science,2014,39(1):164-198. doi: 10.1016/j.progpolymsci.2013.07.008 [31] KIANFAR P, BONGIOVANNI R, AMEDURI B, et al. Electrospinning of fluorinated polymers: Current state of the art on processes and applications[J]. Polymer Reviews,2023,63(1):127-199. doi: 10.1080/15583724.2022.2067868 [32] EISENMENGER W, SCHMIDT H, DEHLEN B. Space charge and dipoles in polyvinylidenefluoride[J]. Brazilian Journal of Physics,1999,29:295-305. [33] HASEGAWA R, TAKAHASHI Y, CHATANI Y, et al. Crystal structures of three crystalline forms of poly(vinylidene fluoride)[J]. Polymer Journal,1972,3(5):600-610. doi: 10.1295/polymj.3.600 [34] WEINHOLD S, LITT M H, LANDO J B. Oriented phase III poly(vinylidene fluoride)[J]. Journal of Polymer Science: Polymer Letters Edition,1979,17(9):585-589. doi: 10.1002/pol.1979.130170907 [35] KARAN S K, DAS A K, BERA R, et al. Effect of γ-PVDF on enhanced thermal conductivity and dielectric property of Fe-rGO incorporated PVDF based flexible nanocomposite film for efficient thermal management and energy storage applications[J]. RSC Advances,2016,6(44):37773-37783. doi: 10.1039/C6RA04365H [36] CUI Z L, HASSANKIADEH N T, ZHUANG Y B, et al. Crystalline polymorphism in poly(vinylidenefluoride) membranes[J]. Progress in Polymer Science,2015,51:94-126. doi: 10.1016/j.progpolymsci.2015.07.007 [37] LIU Z, LI G, QIN Q, et al. Electrospun PVDF/PAN membrane for pressure sensor and sodium-ion battery separator[J]. Advanced Composites and Hybrid Materials,2021,4:1215-1225. doi: 10.1007/s42114-021-00364-4 [38] ZHANG X M, TONG J W, ZHU H E, et al. Room temperature magnetoresistance effects in ferroelectric poly(vinylidene fluoride) spin valves[J]. Journal of Materials Chemistry C,2017,5(21):5055-5062. doi: 10.1039/C7TC00517B [39] ABEDNEJAD A, GHAEE A, MORAIS E S, et al. Polyvinylidene fluoride-hyaluronic acid wound dressing comprised of ionic liquids for controlled drug delivery and dual therapeutic behavior[J]. Acta Biomaterialia,2019,100:142-157. doi: 10.1016/j.actbio.2019.10.007 [40] SHIN K Y, LEE J S, JANG J. Highly sensitive, wearable and wireless pressure sensor using free-standing ZnO nanoneedle/PVDF hybrid thin film for heart rate monitoring[J]. Nano Energy,2016,22:95-104. doi: 10.1016/j.nanoen.2016.02.012 [41] SAXENA P, SHUKLA P. A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF)[J]. Advanced Composites and Hybrid Materials,2021,4(1):8-26. doi: 10.1007/s42114-021-00217-0 [42] PARK H H, DESHWAL B R, JO H D, et al. Absorption of nitrogen dioxide by PVDF hollow fiber membranes in a G-L contactor[J]. Desalination,2009,243(1-3):52-64. doi: 10.1016/j.desal.2008.04.014 [43] CHAE S R, YAMAMURA H, IKEDA K, et al. Comparison of fouling characteristics of two different poly-vinylidene fluoride microfiltration membranes in a pilot-scale drinking water treatment system using pre-coagulation/sedimentation, sand filtration, and chlorination[J]. Water Research,2008,42(8-9):2029-2042. doi: 10.1016/j.watres.2007.12.011 [44] WU B, LI K, TEO W K. Preparation and characterization of poly(vinylidene fluoride) hollow fiber membranes for vacuum membrane distillation[J]. Journal of Applied Polymer Science,2007,106(3):1482-1495. doi: 10.1002/app.26624 [45] TAN X Y, TAN S P, TEO W K, et al. Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water[J]. Journal of Membrane Science,2006,271(1-2):59-68. doi: 10.1016/j.memsci.2005.06.057 [46] BOTTINO A, CAPANNELLI G, COMITE A. Novel porous poly (vinylidene fluoride) membranes for membrane distillation[J]. Desalination,2005,183(1-3):375-382. doi: 10.1016/j.desal.2005.03.040 [47] WANG D. Selective removal of trace H2S from gas streams containing CO2 using hollow fibre membrane modules/contractors[J]. Separation and Purification Technology,2004,35(2):125-131. doi: 10.1016/S1383-5866(03)00135-7 [48] KHAYET M, KHULBE K C, MATSUURA T. Characterization of membranes for membrane distillation by atomic force microscopy and estimation of their water vapor transfer coefficients in vacuum membrane distillation process[J]. Journal of Membrane Science,2004,238(1-2):199-211. doi: 10.1016/j.memsci.2004.03.036 [49] OSHIMA K H, EVANS-STRICKFADEN T T, HIGHSMITH A K, et al. The use of a microporous polyvinylidene fluoride (PVDF) membrane filter to separate contaminating viral particles from biologically important proteins[J]. Biologicals,1996,24(2):137-145. doi: 10.1006/biol.1996.0018 [50] 李俊, 伍文静, 孙金玺, 等. 电纺制备聚丙烯腈/聚偏氟乙烯复合纤维膜及其空气过滤性能[J]. 复合材料学报, 2021, 38(3):741-748.LI Jun, WU Wenjing, SUN Jinxi, et al. Preparation of polyacrylonitrile/polyvinylidene fluoride composite fiber membrane by electrospinning and its air filtration performance[J]. Acta Materiae Compositae Sinica,2021,38(3):741-748(in Chinese). [51] 张红涛, 胡昊, 顾波, 等. 聚偏氟乙烯-沸石复合锂电隔膜的制备及性能[J]. 复合材料学报, 2017, 34(3):625-631.ZHANG Hongtao, HU Hao, GU Bo, et al. Preparation and performances of PVDF-zeolite composite separator for lithium-ion batteries[J]. Acta Materiae Compositae Sinica,2017,34(3):625-631(in Chinese). [52] NGO I L, JEON S, BYON C. Thermal conductivity of transparent and flexible polymers containing fillers: A literature review[J]. International Journal of Heat and Mass Transfer,2016,98:219-226. doi: 10.1016/j.ijheatmasstransfer.2016.02.082 [53] HUANG X Y, JIANG P K, XIE L Y. Ferroelectric polymer/silver nanocomposites with high dielectric constant and high thermal conductivity[J]. Applied Physics Letters,2009,95(24):242901. doi: 10.1063/1.3273368 [54] ZHOU W Y, WANG Z J, DONG L N, et al. Dielectric properties and thermal conductivity of PVDF reinforced with three types of Zn particles[J]. Composites Part A: Applied Science and Manufacturing,2015,79:183-191. doi: 10.1016/j.compositesa.2015.09.004 [55] CAO J P, ZHAO X D, ZHAO J, et al. Improved thermal conductivity and flame retardancy in polystyrene/poly(vinylidene fluoride) blends by controlling selective localization and surface modification of SiC nanoparticles[J]. ACS Applied Materials & Interfaces,2013,5(15):6915-6924. [56] ZHANG D L, ZHA J W, LI W K, et al. Enhanced thermal conductivity and mechanical property through boron nitride hot string in polyvinylidene fluoride fibers by electrospinning[J]. Composites Science and Technology,2018,156:1-7. doi: 10.1016/j.compscitech.2017.12.008 [57] PAK S Y, KIM H M, KIM S Y, et al. Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers[J]. Carbon,2012,50(13):4830-4838. doi: 10.1016/j.carbon.2012.06.009 [58] 蔡瑜, 秦盟盟, 封伟. 具有交联网络的碳纳米管阵列导热材料[J]. 功能高分子学报, 2022, 35(6):524-531.CAI Yu, QIN Mengmeng, FENG Wei. Carbon nanotube arrays with cross-linked networks for thermal conductivity[J]. Journal of Functional Polymers,2022,35(6):524-531(in Chinese). [59] ZHANG W B, XU X L, YANG J H, et al. High thermal conductivity of poly(vinylidene fluoride)/carbon nanotubes nanocomposites achieved by adding polyvinylpyrrolidone[J]. Composites Science and Technology,2015,106:1-8. doi: 10.1016/j.compscitech.2014.10.019 [60] YANG T T, JIANG Z Y, HAN H M, et al. Welding dopamine modified graphene nanosheets onto graphene foam for high thermal conductive composites[J]. Composites Part B: Engineering,2021,205:108509. doi: 10.1016/j.compositesb.2020.108509 [61] YU J H, HUANG X Y, WU C, et al. Permittivity, thermal conductivity and thermal stability of poly(vinylidene fluoride)/graphene nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2011,18(2):478-484. doi: 10.1109/TDEI.2011.5739452 [62] CAO Y, LIANG M J, LIU Z D, et al. Enhanced thermal conductivity for poly(vinylidene fluoride) composites with nano-carbon fillers[J]. RSC Advances,2016,6(72):68357-68362. doi: 10.1039/C6RA11178E [63] YAO B, XU X W, LI H, et al. Soft liquid-metal/elastomer foam with compression-adjustable thermal conductivity and electromagnetic interference shielding[J]. Chemical Engineering Journal,2021,410:128288. doi: 10.1016/j.cej.2020.128288 [64] ZHANG F, REN D, ZHANG Y, et al. Production of highly-oriented graphite monoliths with high thermal conductivity[J]. Chemical Engineering Journal,2022,431:134102. doi: 10.1016/j.cej.2021.134102 [65] ZHANG Y, WANG W, ZHANG F, et al. Micro-diamond assisted bidirectional tuning of thermal conductivity in multifunctional graphene nanoplatelets/nanofibrillated cellulose films[J]. Carbon,2022,189:265-275. doi: 10.1016/j.carbon.2021.12.067 [66] XIE J W, ZHANG Y H, DAI J M, et al. Multifunctional MoSe2@MXene heterostructure-decorated cellulose fabric for wearable thermal therapy[J]. Small,2023,19(9):2205853. doi: 10.1002/smll.202205853 [67] RAJAVEL K, LUO S B, WAN Y J, et al. 2D Ti3C2Tx MXene/polyvinylidene fluoride (PVDF) nanocomposites for attenuation of electromagnetic radiation with excellent heat dissipation[J]. Composites Part A: Applied Science and Manufacturing,2020,129:105693. doi: 10.1016/j.compositesa.2019.105693 [68] GU J W, DU J J, DANG J, et al. Thermal conductivities, mechanical and thermal properties of graphite nanoplatelets/polyphenylene sulfide composites[J]. RSC Advances,2014,4(42):22101-22105. doi: 10.1039/C4RA01761G [69] YANG S Y, MA C C M, TENG C C, et al. Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites[J]. Carbon,2010,48(3):592-603. doi: 10.1016/j.carbon.2009.08.047 [70] NEJAD S J, GOLZARY A. Investigation and modeling of the thermal conductivity of PP/clay nanocomposites and PP/MWCNT nanocomposites[J]. E-Polymers,2010,10(1):1062. [71] KUMAR B R, BASHEER N S, JACOB S, et al. Thermal-lens probing of the enhanced thermal diffusivity of gold nanofluid-ethylene glycol mixture[J]. Journal of Thermal Analysis and Calorimetry,2015,119(1):453-460. doi: 10.1007/s10973-014-4208-2 [72] ZHAO W, LI J J, JIN K X, et al. Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering[J]. Materials Science and Engineering: C,2016,59:1181-1194. doi: 10.1016/j.msec.2015.11.026 [73] MCCULLEN S D, STEVENS D R, ROBERTS W A, et al. Morphological, electrical, and mechanical characterization of electrospun nanofiber mats containing multiwalled carbon nanotubes[J]. Macromolecules,2007,40(4):997-1003. doi: 10.1021/ma061735c [74] AKBARI A, HAMADANIAN M, JABBARI V, et al. Influence of PVDF concentration on the morphology, surface roughness, crystalline structure, and filtration separation properties of semicrystalline phase inversion polymeric membranes[J]. Desalination and Water Treatment,2012,46(1-3):96-106. doi: 10.1080/19443994.2012.677524 [75] RIBEIRO C, SENCADAS V, RIBELLES J L G, et al. Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly(vinylidene fluoride) electrospun membranes[J]. Soft Materials,2010,8(3):274-287. doi: 10.1080/1539445X.2010.495630 [76] ZHENG J F, HE A H, LI J X, et al. Polymorphism control of poly(vinylidene fluoride) through electrospinning[J]. Macromolecular Rapid Communications,2007,28(22):2159-2162. doi: 10.1002/marc.200700544 [77] GU M H, ZHANG J, XIA Y, et al. Poly(vinylidene fluoride) crystallization behavior and membrane structure formation via thermally induced phase separation with benzophenone diluent[J]. Journal of Macromolecular Science, Part B,2007,47(1):180-191. doi: 10.1080/00222340701748628 [78] BENZ M, EULER W B. Determination of the crystalline phases of poly(vinylidene fluoride) under different preparation conditions using differential scanning calorimetry and infrared spectroscopy[J]. Journal of Applied Polymer Science,2003,89(4):1093-1100. doi: 10.1002/app.12267 [79] GREGORIO J, CESTARI M. Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride)[J]. Journal of Polymer Science Part B: Polymer Physics,1994,32(5):859-870. doi: 10.1002/polb.1994.090320509 [80] KOBAYASHI M, TASHIRO K, TADOKORO H. Molecular vibrations of three crystal forms of poly(vinylidene fluoride)[J]. Macromolecules,1975,8(2):158-171. doi: 10.1021/ma60044a013 [81] YANG D D, XU H P, YU W, et al. Dielectric properties and thermal conductivity of graphene nanoplatelet filled poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) blend[J]. Journal of Materials Science: Materials in Electronics,2017,28(17):13006-13012. doi: 10.1007/s10854-017-7132-y [82] CAO Y, DENG Q H, LIU Z D, et al. Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets of MXene[J]. RSC Advances,2017,7(33):20494-20501. doi: 10.1039/C7RA00184C [83] HE F A, LIN K, SHI D L, et al. Preparation of organosilicate/PVDF composites with enhanced piezoelectricity and pyroelectricity by stretching[J]. Composites Science and Technology,2016,137:138-147. doi: 10.1016/j.compscitech.2016.10.031 [84] HONG S M, HWANG S S. Physical properties of thin PVDF/MWNT (multi-walled carbon nanotube) composite films by melt blending[J]. Journal of Nanoscience and Nanotechnology,2008,8(9):4860-4863. doi: 10.1166/jnn.2008.IC49 [85] CHEN J, HUANG X Y, SUN B, et al. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability[J]. ACS Nano,2019,13(1):337-345. doi: 10.1021/acsnano.8b06290 [86] GUO H, LI X, LI B A, et al. Thermal conductivity of graphene/poly(vinylidene fluoride) nanocomposite membrane[J]. Materials & Design,2017,114:355-363. [87] YAO T, ZHOU W Y, PENG W W, et al. Insights into concomitant enhancements of dielectric properties and thermal conductivity of PVDF composites filled with core@double-shell structured Zn@ZnO@PS particles[J]. Journal of Applied Polymer Science,2022,139(44):e53069. [88] ZHOU Y, WANG H, XIANG F, et al. A poly(vinylidene fluoride) composite with added self-passivated microaluminum and nanoaluminum particles for enhanced thermal conductivity[J]. Applied Physics Letters,2011,98(18):182906. doi: 10.1063/1.3580588 [89] ZHOU W Y, GONG Y, TU L T, et al. Dielectric properties and thermal conductivity of core-shell structured Ni@NiO/poly(vinylidene fluoride) composites[J]. Journal of Alloys and Compounds,2017,693:1-8. doi: 10.1016/j.jallcom.2016.09.178 [90] ZHOU W Y, LI X, ZHANG F, et al. Concurrently enhanced dielectric properties and thermal conductivity in PVDF composites with core-shell structured β-SiCw@SiO2 whiskers[J]. Composites Part A: Applied Science and Manufacturing,2020,137:106021. doi: 10.1016/j.compositesa.2020.106021 [91] CHEN X L, LIM J S K, YAN W L, et al. Salt template assisted BN scaffold fabrication toward highly thermally conductive epoxy composites[J]. ACS Applied Materials & Interfaces,2020,12(14):16987-16996. [92] RAM R, SONI V, KHASTGIR D. Electrical and thermal conductivity of polyvinylidene fluoride (PVDF)-conducting carbon black (CCB) composites: Validation of various theoretical models[J]. Composites Part B: Engineering,2020,185:107748. doi: 10.1016/j.compositesb.2020.107748 [93] MA H Y, QIN C, JIN B H, et al. Using a supercritical fluid-assisted thin cell wall stretching-defoaming method to enhance the nanofiller dispersion, EMI shielding, and thermal conduction property of CNF/PVDF nanocomposites[J]. Industrial & Engineering Chemistry Research,2022,61(10):3647-3659. [94] CLAUSI M, GRASSELLI S, MALCHIODI A, et al. Thermally conductive PVDF-graphene nanoplatelet (GnP) coatings[J]. Applied Surface Science,2020,529:147070. doi: 10.1016/j.apsusc.2020.147070 [95] ZHANG P, DING X, WANG Y Y, et al. Segregated double network enabled effective electromagnetic shielding composites with extraordinary electrical insulation and thermal conductivity[J]. Composites Part A: Applied Science and Manufacturing,2019,117:56-64. doi: 10.1016/j.compositesa.2018.11.007 [96] GUAN C L, QIN Y E, WANG B, et al. Highly thermally conductive polymer composites with barnacle-like nano-crystalline diamond@silicon carbide hybrid architecture[J]. Composites Part B: Engineering,2020,198:108167. doi: 10.1016/j.compositesb.2020.108167 [97] SONG Q S, ZHU W, DENG Y, et al. Synergetic optimization of thermal conductivity and breakdown strength of boron nitride/poly (vinylidene fluoride) composite film with sandwich intercalated structure for heat management in flexible electronics[J]. Composites Part A: Applied Science and Manufacturing,2020,135:105933. doi: 10.1016/j.compositesa.2020.105933 [98] HU B, GUO H, WANG Q, et al. Enhanced thermal conductivity by constructing 3D-networks in poly(vinylidene fluoride) composites via positively charged hexagonal boron nitride and silica coated carbon nanotubes[J]. Composites Part A: Applied Science and Manufacturing,2020,137:106038. doi: 10.1016/j.compositesa.2020.106038 [99] SONG Q S, ZHU W, DENG Y, et al. Enhanced through-plane thermal conductivity and high electrical insulation of flexible composite films with aligned boron nitride for thermal interface material[J]. Composites Part A: Applied Science and Manufacturing,2019,127:105654. doi: 10.1016/j.compositesa.2019.105654 [100] JUNG H, YU S, BAE N S, et al. High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube[J]. ACS Applied Materials & Interfaces,2015,7(28):15256-15262. [101] DU C Y, LI M, CAO M, et al. Enhanced thermal and mechanical properties of polyvinlydene fluoride composites with magnetic oriented carbon nanotube[J]. Carbon,2018,126:197-207. doi: 10.1016/j.carbon.2017.10.027 [102] ZHANG F, FENG Y Y, QIN M M, et al. Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite[J]. Advanced Functional Materials,2019,29(25):1901383. doi: 10.1002/adfm.201901383 [103] ZHANG F, FENG Y Y, QIN M M, et al. Stress-sensitive thermally conductive elastic nanocomposite based on interconnected graphite-welded carbon nanotube sponges[J]. Carbon,2019,145:378-388. doi: 10.1016/j.carbon.2019.01.031 [104] ZHANG H, HE Q X, YU H T, et al. A bioinspired polymer-based composite displaying both strong adhesion and anisotropic thermal conductivity[J]. Advanced Functional Materials,2023,33(18):2211985. doi: 10.1002/adfm.202211985 [105] ZHANG P, ZHANG X, DING X, et al. Improving thermal conductivity of polyvinylidene fluoride/low-melting-point alloy with segregated structure induced by incorporation of silver interface layer[J]. Journal of Polymer Research,2022,29(9):1-12. [106] ZHANG Z, CAO M, CHEN P, et al. Improvement of the thermal/electrical conductivity of PA6/PVDF blends via selective MWCNTs-NH2 distribution at the interface[J]. Materials & Design,2019,177:107835. [107] HUANG L J, QU Y T, HUANG Z X, et al. Enhancing thermal conductivity of segregated structural PE/PVDF/BN composites: Role of viscosities[J]. Composites Part A: Applied Science and Manufacturing,2022,156:106893. doi: 10.1016/j.compositesa.2022.106893 [108] ZENG X L, YAO Y M, GONG Z Y, et al. Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement[J]. Small,2015,11(46):6205-6213. doi: 10.1002/smll.201502173 [109] WANG R, XIE C Z, GOU B, et al. Significant thermal conductivity enhancement of polymer nanocomposites at low content via graphene aerogel[J]. Materials Letters,2021,305:130771. doi: 10.1016/j.matlet.2021.130771 [110] ZHANG F, FENG Y Y, FENG W. Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms[J]. Materials Science and Engineering: R: Reports,2020,142:100580. doi: 10.1016/j.mser.2020.100580 [111] LEI B W, BAI S X, LIANG G Y, et al. Three-dimensional boron nitride reinforced thermal conductive composites with high elasticity[J]. Journal of Alloys and Compounds,2022,922:166046. doi: 10.1016/j.jallcom.2022.166046 [112] 宋莎莎. 聚偏氟乙烯基导热复合材料的制备与性能研究[D]. 天津: 天津大学, 2020.SONG Shasha. Preparation and properties of poly(vinylidene fluoride)-based thermal conductive composites[D]. Tianjin: Tianjin University, 2020(in Chinese). [113] GUO B C, TANG Z H, ZHANG L Q. Transport performance in novel elastomer nanocomposites: Mechanism, design and control[J]. Progress in Polymer Science,2016,61:29-66. doi: 10.1016/j.progpolymsci.2016.06.001 [114] DANG T M L, KIM C Y, ZHANG Y M, et al. Enhanced thermal conductivity of polymer composites via hybrid fillers of anisotropic aluminum nitride whiskers and isotropic spheres[J]. Composites Part B: Engineering,2017,114:237-246. doi: 10.1016/j.compositesb.2017.02.008 [115] HUANG C L, QIAN X, YANG R G. Thermal conductivity of polymers and polymer nanocomposites[J]. Materials Science and Engineering: R: Reports,2018,132:1-22. doi: 10.1016/j.mser.2018.06.002 [116] WANG J Q, HU L, LI W H, et al. Development and perspectives of thermal conductive polymer composites[J]. Nanomaterials,2022,12(20):3574. doi: 10.3390/nano12203574 [117] LI Y, HUANG X Y, HU Z W, et al. Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites[J]. ACS Applied Materials & Interfaces,2011,3(11):4396-4403. [118] 石贤斌, 张帅, 陈超, 等. 氮化硼纳米片的绿色制备及在导热复合材料中的应用[J]. 复合材料学报, 2023, 40(8):4563-4572.SHI Xianbin, ZHANG Shuai, CHEN Chao, et al. Green preparation of boron nitride nanosheets and their application in thermal conductivity composites[J]. Acta Materiae Compositae Sinica,2023,40(8):4563-4572(in Chinese). [119] CAI Y, YU H T, CHEN C, et al. Improved thermal conductivities of vertically aligned carbon nanotube arrays using three-dimensional carbon nanotube networks[J]. Carbon,2022,196:902-912. doi: 10.1016/j.carbon.2022.05.050 [120] WANG Z G, HUANG Y F, ZHANG G Q, et al. Enhanced thermal conductivity of segregated poly(vinylidene fluoride) composites via forming hybrid conductive network of boron nitride and carbon nanotubes[J]. Industrial & Engineering Chemistry Research,2018,57(31):10391-10397. [121] RUAN K, SHI X, GUO Y, et al. Interfacial thermal resistance in thermally conductive polymer composites: A review[J]. Composites Communications,2020,22:100518. doi: 10.1016/j.coco.2020.100518 [122] HASSAN E A M, YANG L L, ELAGIB T H H, et al. Synergistic effect of hydrogen bonding and π-π stacking in interface of CF/PEEK composites[J]. Composites Part B: Engineering,2019,171:70-77. doi: 10.1016/j.compositesb.2019.04.015 [123] IKRAMULLAH, RIZAL S, NAKAI Y, et al. Evaluation of interfacial fracture toughness and interfacial shear strength of Typha spp. fiber/polymer composite by double shear test method[J]. Materials,2019,12(14):2225. doi: 10.3390/ma12142225 [124] KIM H S, JANG J U, LEE H, et al. Thermal management in polymer composites: A review of physical and structural parameters[J]. Advanced Engineering Materials,2018,20(10):1800204. doi: 10.1002/adem.201800204 [125] PAN C, KOU K C, JIA Q, et al. Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent[J]. Composites Part B: Engineering,2017,111:83-90. doi: 10.1016/j.compositesb.2016.11.050 [126] LI G H, XING R F, GENG P P, et al. Surface modification of boron nitride via poly (dopamine) coating and preparation of acrylonitrile-butadiene-styrene copolymer/boron nitride composites with enhanced thermal conductivity[J]. Polymers for Advanced Technologies,2018,29(1):337-346. doi: 10.1002/pat.4119 [127] JIANG Y E, LIU Y J, MIN P, et al. BN@PPS core-shell structure particles and their 3D segregated architecture composites with high thermal conductivities[J]. Composites Science and Technology,2017,144:63-69. doi: 10.1016/j.compscitech.2017.03.023 [128] HUANG X Y, ZHI C Y, JIANG P K, et al. Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: An ideal dielectric material with high thermal conductivity[J]. Advanced Functional Materials,2013,23(14):1824-1831. doi: 10.1002/adfm.201201824 [129] XU Y S, CHUNG D D L, MROZ C. Thermally conducting aluminum nitride polymer-matrix composites[J]. Composites Part A: Applied Science and Manufacturing,2001,32(12):1749-1757. doi: 10.1016/S1359-835X(01)00023-9 [130] WANG B, YIN X H, PENG D, et al. Highly thermally conductive PVDF-based ternary dielectric composites via engineering hybrid filler networks[J]. Composites Part B: Engineering,2020,191:107978. doi: 10.1016/j.compositesb.2020.107978 [131] SONG S S, CAO M, SHAN H T, et al. Polyhedral oligomeric silsesquioxane functionalized carbon nanotubes for high thermal conductive poly(vinylidene fluoride) composite membrane[J]. Materials & Design,2018,156:242-251. [132] LIANG J C, LUO J W, ZHANG J X, et al. Constructing a high-density thermally conductive network through electrospinning-hot-pressing of BN@PDA/GO/PVDF composites[J]. ACS Applied Polymer Materials,2022,4(4):2414-2422. doi: 10.1021/acsapm.1c01705 [133] ZHANG W B, ZHANG Z X, YANG J H, et al. Largely enhanced thermal conductivity of poly(vinylidene fluoride)/carbon nanotube composites achieved by adding graphene oxide[J]. Carbon,2015,90:242-254. doi: 10.1016/j.carbon.2015.04.040 [134] ZHOU W Y, ZHANG F, YUAN M X, et al. Improved dielectric properties and thermal conductivity of PVDF composites filled with core-shell structured Cu@CuO particles[J]. Journal of Materials Science: Materials in Electronics,2019,30(20):18350-18361. doi: 10.1007/s10854-019-02189-w [135] XIE L Y, HUANG X Y, YANG K, et al. “Grafting to” route to PVDF-HFP-GMA/BaTiO3 nanocomposites with high dielectric constant and high thermal conductivity for energy storage and thermal management applications[J]. Journal of Materials Chemistry A,2014,2(15):5244-5251. doi: 10.1039/c3ta15156e [136] ZHANG F, ZHOU W Y, ZHANG C H, et al. Toward enhancing dielectric properties and thermal conductivity of f-Cu/PVDF with PS as an interlayer[J]. Polymer-Plastics Technology and Materials,2021,60(6):680-693. doi: 10.1080/25740881.2020.1851377 [137] 李欣, 李保安, 王世昌. 氧化石墨烯/聚偏氟乙烯复合膜研究[J]. 化学工业与工程, 2014, 31(4):26-30.LI Xin, LI Baoan, WANG Shichang. Graphene oxide/polyvinylidenefluride(PVDF) films[J]. Chemical Industry and Engineering,2014,31(4):26-30(in Chinese). [138] 裴丽霞, 王雪银, 徐建昌, 等. 微纳米复合导热材料的制备及导热性能[J]. 化工新型材料, 2017, 45(2):228-229, 232.PEI Lixia, WANG Xueyin, XU Jianchang, et al. Preparation and property of thermal conductive micro-nanocompo-site[J]. New Chemical Materials,2017,45(2):228-229, 232(in Chinese).