留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚偏氟乙烯基复合材料导热性能的研究进展

李坤鹏 焦文玲 何丽萍 白俊垒 屈怡婷 张骁骅 丁彬

李坤鹏, 焦文玲, 何丽萍, 等. 聚偏氟乙烯基复合材料导热性能的研究进展[J]. 复合材料学报, 2024, 41(1): 16-37. doi: 10.13801/j.cnki.fhclxb.20230814.002
引用本文: 李坤鹏, 焦文玲, 何丽萍, 等. 聚偏氟乙烯基复合材料导热性能的研究进展[J]. 复合材料学报, 2024, 41(1): 16-37. doi: 10.13801/j.cnki.fhclxb.20230814.002
LI Kunpeng, JIAO Wenling, HE Liping, et al. Research progress on thermal conductivity of polyvinylidene fluoride composites[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 16-37. doi: 10.13801/j.cnki.fhclxb.20230814.002
Citation: LI Kunpeng, JIAO Wenling, HE Liping, et al. Research progress on thermal conductivity of polyvinylidene fluoride composites[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 16-37. doi: 10.13801/j.cnki.fhclxb.20230814.002

聚偏氟乙烯基复合材料导热性能的研究进展

doi: 10.13801/j.cnki.fhclxb.20230814.002
基金项目: 中央高校基本科研业务费专项资金 (2232021G-01);上海市青年科技英才扬帆计划(21YF1400900);国家自然科学基金青年科学基金项目(52103280);上海市教育发展基金会和上海市教育委员会“晨光计划”项目(21CGA39)
详细信息
    通讯作者:

    焦文玲,博士,讲师,硕士生导师,研究方向为功能化纤维材料在能源环境领域应用研究 E-mail: wenlingjiao@dhu.edu.cn

  • 中图分类号: TB332;TQ317.3

Research progress on thermal conductivity of polyvinylidene fluoride composites

Funds: The Fundamental Research Funds for the Central Universities (2232021G-01); Shanghai Sailing Program (21YF1400900); National Natural Science Foundation of China (NSFC) Young Scientists Fund Project (52103280); The Chenguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (21CGA39)
  • 摘要: 导热复合材料在电子封装、电机材料、电池及换热设备等领域具有广泛的应用价值。聚偏氟乙烯 (PVDF) 具有优异的电气性能、良好的机械强度和耐高温性能,是应用于电子电器、航空航天等行业的理想材料之一,但较低的热导率制约其进一步发展,亟待开发PVDF基高导热复合材料。其制备的关键在于如何选择高导热填料、设计导热通路及调控界面热阻。本文在聚合物基导热复合材料的机制、模型、方程及数值模拟等理论知识的基础上,结合PVDF自身晶体结构,介绍目前PVDF基导热复合材料热导率的发展水平,各种填料及制备工艺对其热导率的不同影响程度等内容,从复合策略、网络结构、界面结合等角度综述了高导热PVDF复合材料的最新研究进展。此外,对其未来发展也进行了展望。

     

  • 图  1  聚合物基导热复合材料介绍[28]

    Figure  1.  Introduction of polymer-based thermal conductive composites[28]

    CNT—Carbon nanotubes

    图  2  (a) 用于钠离子电池的PVDF/聚丙烯腈(PAN)静电纺隔膜[37];(b) 具有PVDF聚合物堆叠结构的自旋阀装置[38];(c) 基于PVDF开发药物输送载体的工作流程[39];(d) 基于PVDF的可穿戴传感器[40]

    Figure  2.  (a) PVDF/polyacrylonitrile (PAN) electrospun membrane for sodium ion batteries[37]; (b) Spin valve device with PVDF polymer stacking structure[38]; (c) Workflow of developing drug delivery carriers based on PVDF[39]; (d) PVDF-based wearable sensors[40]

    HA—Hyaluronic acid; API-IL—Active pharmaceutical ingredient ionic liquids; H—Magnetic field intensity; I—Electric current; V—Voltage

    图  3  PVDF基复合材料导热性能提升方式[10]

    Figure  3.  Way to improve the thermal conductivity of PVDF-based composites[10]

    图  4  (a) 纯PVDF和PVDF复合材料的热扩散率和热导率;(b) 纯PVDF与PVDF复合材料关于热导率增强程度的对比;(c) 纯PVDF、PVDF/富勒烯(SF)、PVDF/CNT和PVDF/石墨烯(GS)复合材料在加热时的红外图像;(d) 纯PVDF、PVDF/SF、PVDF/CNT和PVDF/GS复合材料在加热和冷却时表面温度随时间的变化;(e) 含SF、CNT和GS的PVDF复合材料的热流模型[62]

    Figure  4.  (a) Thermal diffusivity and thermal conductivity of pure PVDF and PVDF composites; (b) Comparison of thermal conductivity enhancement between pure PVDF and PVDF-based composites materials; (c) Infrared images of pure PVDF, PVDF/superfullerene (SF), PVDF/CNT and PVDF/graphene sheets (GS) composites when heated; (d) Surface temperature of pure PVDF, PVDF/SF, PVDF/CNT and PVDF/GS composites changes with time during heating and cooling; (e) Heat flux model of PVDF composites containing SF, CNT and GS[62]

    TCE—Thermal conductivity enhancement; dT/dt—Rate of change of temperature with respect to time

    图  5  (a) 溶液共混方法制备MXene/PVDF复合材料示意图[82];(b) 静电纺丝方法制备BN纳米片(BNNS)/PVDF复合薄膜示意图[85]

    Figure  5.  (a) Schematic diagram of PVDF/MXene composite prepared by solution blending method[82]; (b) Schematic diagram of PVDF/boron nitridenanosheets (BNNS) composite film prepared by electrospinning method[85]

    DMF—Dimethylformamide

    图  6  (a) PVDF复合材料的初始棒材涂布工艺[99];(b) L形扭结管中熔融压缩溶液浇注PVDF和石墨烯纳米片薄膜[100];(c) 磁场定向控制磁性CNT的取向提高其热导率示意图[101]

    Figure  6.  (a) Initial bar coating process of PVDF composites[99]; (b) PVDF and graphene nanosheet films were cast by melt-compression solution in an L-shaped kink tube[100]; (c) Magnetic field oriented control of the orientation of magnetic CNT (mCNT) to improve its thermal conductivity[101]

    GNF—Graphene nanoflake; PSS—Poly(sodium 4-styrene sulfonate)

    图  7  (a) 不同BN纳米片(BNNS)含量的BNNS/PVDF复合材料的热导率;(b) 不同BNNS含量的BNNS@树脂复合材料的热导率;(c) 不同BNNS含量的PVDF/BNNS和BNNS@树脂/PVDF的热导率;(d) 构建导热通道的理论模型;(e) 模拟不同BNNS含量的BNNS/PVDF复合材料的传热过程[111]

    Figure  7.  (a) Thermal conductivity of PVDF/boron nitride nanosheets (BNNS) composites with different BNNS content; (b) Thermal conductivity of BNNS@resin composites with different BNNS content; (c) Thermal conductivity of PVDF/BNNS and BNNS@resin/PVDF with different BNNS content; (d) Construct the theoretical model of thermal conduction channel; (e) Heat transfer process of PVDF/BNNS composites with different BNNS content was simulated[111]

    MS—Melamine-formaldehyde resin sponge

    图  8  (a) 单一ZnO填料复合材料的热传导模型;(b) 两种不同尺寸ZnO填料经过杂化而成的复合材料的热传导模型; (c) 3种不同尺寸ZnO填料经过杂化而成的复合材料的热传导模型[113];(d) 室温下,Al/PVDF复合材料的热导率与Al填料 (微米和纳米尺寸下) 的体积比例的关系[88]

    Figure  8.  (a) Heat conduction model of composites with single filler; (b) Heat conduction model of composites with hybrid fillers of two different sizes; (c) Heat conduction model of composites with hybrid fillers of three different sizes[113]; (d) At room temperature, the relationship between the thermal conductivity of Al/PVDF composites and the volume ratio of Al fillers (micron size and nano size)[88]

    λmax—Maximum value of the thermal conductivity; Y—Volume ratio VmicroVnano

    图  9  ((a)~(g)) AlN晶须与球体混合填料的示意图(体积比分别为1:0、6:1、3:1、1:1、1:3、1:6和0:1)[114];(h) PVDF复合材料示意图;(i) 25℃下BaTiO3/PVDF、SiC/PVDF和BaTiO3/SiC/PVDF复合材料的热导率[117]

    Figure  9.  ((a)-(g)) Schematic diagrams of AlN whisker and sphere mixed fillers with volume ratios of 1:0, 6:1, 3:1, 1:1, 1:3, 1:6 and 0:1, respectively[114]; (h) Schematic diagram of PVDF composite; (i) Thermal conductivity of BaTiO3/PVDF, SiC/PVDF and BaTiO3/SiC/PVDF composites at 25℃[117]

    图  10  (a) SiC与BN桥接形成的导热路径[130];(b) 不同填料负载的PVDF复合膜的导热系数[131];(c) PVDF/CNT和PVDF/CNT/氧化石墨烯(GO)复合材料中填料分散状态[133]

    Figure  10.  (a) Thermal conduction path formed by the network bridging of SiC nanowires and BN nanosheets[130]; (b) Thermal conductivity of PVDF composite membranes loaded with different fillers[131]; (c) Dispersion of fillers in PVDF/CNT and PVDF/CNT/graphene oxide (GO) composites[133]

    f-SiC—Functionalized SiC; hBN—Hexagonal BN; POSS—Polyhedral oligomeric silsesquioxane

    表  1  具有不同晶型的聚偏氟乙烯(PVDF)晶体的性质[36]

    Table  1.   Properties of polyvinylidene fluoride (PVDF) crystals with different crystal forms[36]

    Categoryαβγ
    Molecular conformationTGTG'TTTTTGTTG'
    Melting pointLowMediumHigh
    PolarityNoneStrongIntermediate
    Electronically activeNoneHigh
    piezo-electric,
    ferro-electric
    Intermediate
    ElasticityGreatest
    Solvent resistanceStrong
    Thermal stabilityWeakStrong
    RadiotoleranceStrong
    下载: 导出CSV

    表  2  室温下各类填料的热导率[52]

    Table  2.   Thermal conductivity of various fillers at room temperature[52]

    CategoryFillerThermal conductivity/
    (W·m–1·K–1)
    Metallic fillersNi158.00
    Al204.00
    Au345.00
    Ag450.00
    Cu483.00
    Ceramic fillersAl2O330.00
    SiC30.00-270.00
    AlN200.00
    BN250.00-300.00
    Carbon fillersGraphite100.00-400.00
    Diamond2000.00
    CNT2000.00-6000.00
    Graphene4800.00-5300.00
    下载: 导出CSV

    表  3  室温下不同单一填料及成型工艺所制备PVDF复合材料的热导率

    Table  3.   Thermal conductivity of PVDF composites prepared by different fillers and molding process at room temperature

    Filling material typePreparation technologyThermal conductivity/
    (W·m–1·K–1)
    Ag[53] Solution blending 6.50
    Zn[54] Solution blending 1.20
    Zn@ZnO[87] Solution blending 0.54
    Al[88] Melt blending 3.26
    Ni[89] Solution blending 1.13
    SiC[55] Masterbatch process 1.88
    β-SiC[90] Solution blending 1.82
    BN[56] Electrostatic spinning 7.29
    BNNS[85] Electrostatic spinning 18.33
    h-BN[91] Salt template, thermal curing process 1.47
    CCB[92] Solution blending 0.44
    CNT[93] Melt blending 1.40
    Graphene[86] Solvent casting 0.56
    GnPs[94] Spray coating, thermal annealing 12.00
    MXene[82] Solution blending 0.36
    Notes: h-BN—Hexagonal boron nitride; CCB—Conducting carbon black; GnPs—Graphene nanoplatelets.
    下载: 导出CSV
  • [1] MOLINA-JORDÁ J M. Thermal conductivity of metal matrix composites with coated inclusions: A new modelling approach for interface engineering design in thermal management[J]. Journal of Alloys and Compounds,2018,745:849-855. doi: 10.1016/j.jallcom.2018.02.092
    [2] MALLIK S, EKERE N, BEST C, et al. Investigation of thermal management materials for automotive electronic control units[J]. Applied Thermal Engineering,2011,31(2-3):355-362. doi: 10.1016/j.applthermaleng.2010.09.023
    [3] NIETO A, BISHT A, LAHIRI D, et al. Graphene reinforced metal and ceramic matrix composites: A review[J]. International Materials Reviews,2017,62(5):241-302. doi: 10.1080/09506608.2016.1219481
    [4] FLORES O, BORDIA R K, NESTLER D, et al. Ceramic fibers based on SiC and SiCN systems: Current research, development, and commercial status[J]. Advanced Engineering Materials,2014,16(6):621-636. doi: 10.1002/adem.201400069
    [5] YU H T, CHEN C, SUN J X, et al. Highly thermally conductive polymer/graphene composites with rapid room-temperature self-healing capacity[J]. Nano-Micro Letters,2022,14(1):135. doi: 10.1007/s40820-022-00882-w
    [6] PENG L Q, YU H T, CHEN C, et al. Tailoring dense, orientation-tunable, and interleavedly structured carbon-based heat dissipation plates[J]. Advanced Science,2023,10(7):2205962. doi: 10.1002/advs.202205962
    [7] YANG X T, GUO Y Q, HAN Y X, et al. Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology[J]. Composites Part B: Engineering,2019,175:107070. doi: 10.1016/j.compositesb.2019.107070
    [8] HAN Z D, FINA A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review[J]. Progress in Polymer Science,2011,36(7):914-944. doi: 10.1016/j.progpolymsci.2010.11.004
    [9] CHEN H, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science,2016,59:41-85. doi: 10.1016/j.progpolymsci.2016.03.001
    [10] GUO Y Q, RUAN K P, SHI X T, et al. Factors affecting thermal conductivities of the polymers and polymer composites: A review[J]. Composites Science and Technology,2020,193:108134. doi: 10.1016/j.compscitech.2020.108134
    [11] SOGA K, SAITO T, KAWAGUCHI T, et al. Percolation effect on thermal conductivity of filler-dispersed polymer composites[J]. Journal of Thermal Science and Technology,2017,12(1):000581.
    [12] LI A, ZHANG C, ZHANG Y. Thermal conductivity of graphene-polymer composites: Mechanisms, properties, and applications[J]. Polymers,2017,9(9):437. doi: 10.3390/polym9090437
    [13] ZHANG X, WU K, LIU Y H, et al. Preparation of highly thermally conductive but electrically insulating composites by constructing a segregated double network in polymer composites[J]. Composites Science and Technology,2019,175:135-142. doi: 10.1016/j.compscitech.2019.03.017
    [14] KIM J M, JUNG D W, KIM L S, et al. Continuously thermal conductive pathway of bidisperse boron nitride fillers in epoxy composite for highly efficient heat dissipation[J]. Materials Today Communications,2021,27:102230. doi: 10.1016/j.mtcomm.2021.102230
    [15] JANG J, NAM H, SO S, et al. Thermal percolation behavior in thermal conductivity of polymer nanocomposite with lateral size of graphene nanoplatelet[J]. Polymers,2022,14(2):323. doi: 10.3390/polym14020323
    [16] LI C, GUO H, TIAN X, et al. Transient response for a half-space with variable thermal conductivity and diffusivity under thermal and chemical shock[J]. Journal of Thermal Stresses,2016,40(3):389-401.
    [17] PAL R. New models for thermal conductivity of particulate composites[J]. Journal of Reinforced Plastics and Composites,2007,26(7):643-651. doi: 10.1177/0731684407075569
    [18] LIN F, BHATIA G S, FORD J D. Thermal conductivities of powder-filled epoxy resins[J]. Journal of Applied Polymer Science,1993,49(11):1901-1908. doi: 10.1002/app.1993.070491105
    [19] HATTA H, TAYA M, KULACKI F A, et al. Thermal diffusivities of composites with various types of filler[J]. Journal of Composite Materials,1992,26(5):612-625. doi: 10.1177/002199839202600501
    [20] LIAO Q W, LIU Z C, LIU W, et al. Extremely high thermal conductivity of aligned carbon nanotube-polyethylene composites[J]. Scientific Reports,2015,5(1):16543. doi: 10.1038/srep16543
    [21] GU J W, GUO Y Q, LYU Z Y, et al. Highly thermally conductive POSS-g-SiCp/UHMWPE composites with excellent dielectric properties and thermal stabilities[J]. Composites Part A: Applied Science and Manufacturing,2015,78:95-101. doi: 10.1016/j.compositesa.2015.08.004
    [22] XU Z W, CHEN Y R, CHEN X, et al. Enhanced thermal conductivity and electrically insulating of polymer composites[J]. Journal of Materials Science,2021,56(6):4225-4238. doi: 10.1007/s10853-020-05530-5
    [23] ZHAO K, LI S S, HUANG M, et al. Remarkably anisotropic conductive MWCNTs/polypropylene nanocomposites with alternating microlayers[J]. Chemical Engineering Journal,2019,358:924-935. doi: 10.1016/j.cej.2018.10.078
    [24] WU K, WANG J K, LIN F Q, et al. Modification and characterization of the poly(vinyl chloride)/thermoplastic polyurethane foam composite material[J]. Polymer Composites,2014,35(9):1716-1722. doi: 10.1002/pc.22825
    [25] FENG X M, XING W Y, SONG L, et al. TiO2 loaded on graphene nanosheet as reinforcer and its effect on the thermal behaviors of poly(vinyl chloride) composites[J]. Chemical Engineering Journal,2015,260:524-531. doi: 10.1016/j.cej.2014.08.103
    [26] KALAJ M, DENNY M S, BENTZ K C, et al. Nylon-MOF composites through postsynthetic polymerization[J]. Angewandte Chemie International Edition,2019,58(8):2336-2340. doi: 10.1002/anie.201812655
    [27] YU Y L, CHEN H, LIU Y, et al. Superhydrophobic and superoleophilic porous boron nitride nanosheet/polyvinylidene fluoride composite material for oil-polluted water cleanup[J]. Advanced Materials Interfaces,2015,2(1):1400267. doi: 10.1002/admi.201400267
    [28] YU S, HUANG M, HAO R, et al. Recent advances in thermally conductive polymer composites[J]. High Performance Polymers,2022,34(10):1-21.
    [29] ERDTMAN E, SATYANARAYANA K C, BOLTON K. Simulation of α- and β-PVDF melting mechanisms[J]. Polymer,2012,53(14):2919-2926. doi: 10.1016/j.polymer.2012.04.045
    [30] CUI Z L, DRIOLI E, LEE Y M. Recent progress in fluoropolymers for membranes[J]. Progress in Polymer Science,2014,39(1):164-198. doi: 10.1016/j.progpolymsci.2013.07.008
    [31] KIANFAR P, BONGIOVANNI R, AMEDURI B, et al. Electrospinning of fluorinated polymers: Current state of the art on processes and applications[J]. Polymer Reviews,2023,63(1):127-199. doi: 10.1080/15583724.2022.2067868
    [32] EISENMENGER W, SCHMIDT H, DEHLEN B. Space charge and dipoles in polyvinylidenefluoride[J]. Brazilian Journal of Physics,1999,29:295-305.
    [33] HASEGAWA R, TAKAHASHI Y, CHATANI Y, et al. Crystal structures of three crystalline forms of poly(vinylidene fluoride)[J]. Polymer Journal,1972,3(5):600-610. doi: 10.1295/polymj.3.600
    [34] WEINHOLD S, LITT M H, LANDO J B. Oriented phase III poly(vinylidene fluoride)[J]. Journal of Polymer Science: Polymer Letters Edition,1979,17(9):585-589. doi: 10.1002/pol.1979.130170907
    [35] KARAN S K, DAS A K, BERA R, et al. Effect of γ-PVDF on enhanced thermal conductivity and dielectric property of Fe-rGO incorporated PVDF based flexible nanocomposite film for efficient thermal management and energy storage applications[J]. RSC Advances,2016,6(44):37773-37783. doi: 10.1039/C6RA04365H
    [36] CUI Z L, HASSANKIADEH N T, ZHUANG Y B, et al. Crystalline polymorphism in poly(vinylidenefluoride) membranes[J]. Progress in Polymer Science,2015,51:94-126. doi: 10.1016/j.progpolymsci.2015.07.007
    [37] LIU Z, LI G, QIN Q, et al. Electrospun PVDF/PAN membrane for pressure sensor and sodium-ion battery separator[J]. Advanced Composites and Hybrid Materials,2021,4:1215-1225. doi: 10.1007/s42114-021-00364-4
    [38] ZHANG X M, TONG J W, ZHU H E, et al. Room temperature magnetoresistance effects in ferroelectric poly(vinylidene fluoride) spin valves[J]. Journal of Materials Chemistry C,2017,5(21):5055-5062. doi: 10.1039/C7TC00517B
    [39] ABEDNEJAD A, GHAEE A, MORAIS E S, et al. Polyvinylidene fluoride-hyaluronic acid wound dressing comprised of ionic liquids for controlled drug delivery and dual therapeutic behavior[J]. Acta Biomaterialia,2019,100:142-157. doi: 10.1016/j.actbio.2019.10.007
    [40] SHIN K Y, LEE J S, JANG J. Highly sensitive, wearable and wireless pressure sensor using free-standing ZnO nanoneedle/PVDF hybrid thin film for heart rate monitoring[J]. Nano Energy,2016,22:95-104. doi: 10.1016/j.nanoen.2016.02.012
    [41] SAXENA P, SHUKLA P. A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF)[J]. Advanced Composites and Hybrid Materials,2021,4(1):8-26. doi: 10.1007/s42114-021-00217-0
    [42] PARK H H, DESHWAL B R, JO H D, et al. Absorption of nitrogen dioxide by PVDF hollow fiber membranes in a G-L contactor[J]. Desalination,2009,243(1-3):52-64. doi: 10.1016/j.desal.2008.04.014
    [43] CHAE S R, YAMAMURA H, IKEDA K, et al. Comparison of fouling characteristics of two different poly-vinylidene fluoride microfiltration membranes in a pilot-scale drinking water treatment system using pre-coagulation/sedimentation, sand filtration, and chlorination[J]. Water Research,2008,42(8-9):2029-2042. doi: 10.1016/j.watres.2007.12.011
    [44] WU B, LI K, TEO W K. Preparation and characterization of poly(vinylidene fluoride) hollow fiber membranes for vacuum membrane distillation[J]. Journal of Applied Polymer Science,2007,106(3):1482-1495. doi: 10.1002/app.26624
    [45] TAN X Y, TAN S P, TEO W K, et al. Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water[J]. Journal of Membrane Science,2006,271(1-2):59-68. doi: 10.1016/j.memsci.2005.06.057
    [46] BOTTINO A, CAPANNELLI G, COMITE A. Novel porous poly (vinylidene fluoride) membranes for membrane distillation[J]. Desalination,2005,183(1-3):375-382. doi: 10.1016/j.desal.2005.03.040
    [47] WANG D. Selective removal of trace H2S from gas streams containing CO2 using hollow fibre membrane modules/contractors[J]. Separation and Purification Technology,2004,35(2):125-131. doi: 10.1016/S1383-5866(03)00135-7
    [48] KHAYET M, KHULBE K C, MATSUURA T. Characterization of membranes for membrane distillation by atomic force microscopy and estimation of their water vapor transfer coefficients in vacuum membrane distillation process[J]. Journal of Membrane Science,2004,238(1-2):199-211. doi: 10.1016/j.memsci.2004.03.036
    [49] OSHIMA K H, EVANS-STRICKFADEN T T, HIGHSMITH A K, et al. The use of a microporous polyvinylidene fluoride (PVDF) membrane filter to separate contaminating viral particles from biologically important proteins[J]. Biologicals,1996,24(2):137-145. doi: 10.1006/biol.1996.0018
    [50] 李俊, 伍文静, 孙金玺, 等. 电纺制备聚丙烯腈/聚偏氟乙烯复合纤维膜及其空气过滤性能[J]. 复合材料学报, 2021, 38(3):741-748.

    LI Jun, WU Wenjing, SUN Jinxi, et al. Preparation of polyacrylonitrile/polyvinylidene fluoride composite fiber membrane by electrospinning and its air filtration performance[J]. Acta Materiae Compositae Sinica,2021,38(3):741-748(in Chinese).
    [51] 张红涛, 胡昊, 顾波, 等. 聚偏氟乙烯-沸石复合锂电隔膜的制备及性能[J]. 复合材料学报, 2017, 34(3):625-631.

    ZHANG Hongtao, HU Hao, GU Bo, et al. Preparation and performances of PVDF-zeolite composite separator for lithium-ion batteries[J]. Acta Materiae Compositae Sinica,2017,34(3):625-631(in Chinese).
    [52] NGO I L, JEON S, BYON C. Thermal conductivity of transparent and flexible polymers containing fillers: A literature review[J]. International Journal of Heat and Mass Transfer,2016,98:219-226. doi: 10.1016/j.ijheatmasstransfer.2016.02.082
    [53] HUANG X Y, JIANG P K, XIE L Y. Ferroelectric polymer/silver nanocomposites with high dielectric constant and high thermal conductivity[J]. Applied Physics Letters,2009,95(24):242901. doi: 10.1063/1.3273368
    [54] ZHOU W Y, WANG Z J, DONG L N, et al. Dielectric properties and thermal conductivity of PVDF reinforced with three types of Zn particles[J]. Composites Part A: Applied Science and Manufacturing,2015,79:183-191. doi: 10.1016/j.compositesa.2015.09.004
    [55] CAO J P, ZHAO X D, ZHAO J, et al. Improved thermal conductivity and flame retardancy in polystyrene/poly(vinylidene fluoride) blends by controlling selective localization and surface modification of SiC nanoparticles[J]. ACS Applied Materials & Interfaces,2013,5(15):6915-6924.
    [56] ZHANG D L, ZHA J W, LI W K, et al. Enhanced thermal conductivity and mechanical property through boron nitride hot string in polyvinylidene fluoride fibers by electrospinning[J]. Composites Science and Technology,2018,156:1-7. doi: 10.1016/j.compscitech.2017.12.008
    [57] PAK S Y, KIM H M, KIM S Y, et al. Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers[J]. Carbon,2012,50(13):4830-4838. doi: 10.1016/j.carbon.2012.06.009
    [58] 蔡瑜, 秦盟盟, 封伟. 具有交联网络的碳纳米管阵列导热材料[J]. 功能高分子学报, 2022, 35(6):524-531.

    CAI Yu, QIN Mengmeng, FENG Wei. Carbon nanotube arrays with cross-linked networks for thermal conductivity[J]. Journal of Functional Polymers,2022,35(6):524-531(in Chinese).
    [59] ZHANG W B, XU X L, YANG J H, et al. High thermal conductivity of poly(vinylidene fluoride)/carbon nanotubes nanocomposites achieved by adding polyvinylpyrrolidone[J]. Composites Science and Technology,2015,106:1-8. doi: 10.1016/j.compscitech.2014.10.019
    [60] YANG T T, JIANG Z Y, HAN H M, et al. Welding dopamine modified graphene nanosheets onto graphene foam for high thermal conductive composites[J]. Composites Part B: Engineering,2021,205:108509. doi: 10.1016/j.compositesb.2020.108509
    [61] YU J H, HUANG X Y, WU C, et al. Permittivity, thermal conductivity and thermal stability of poly(vinylidene fluoride)/graphene nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2011,18(2):478-484. doi: 10.1109/TDEI.2011.5739452
    [62] CAO Y, LIANG M J, LIU Z D, et al. Enhanced thermal conductivity for poly(vinylidene fluoride) composites with nano-carbon fillers[J]. RSC Advances,2016,6(72):68357-68362. doi: 10.1039/C6RA11178E
    [63] YAO B, XU X W, LI H, et al. Soft liquid-metal/elastomer foam with compression-adjustable thermal conductivity and electromagnetic interference shielding[J]. Chemical Engineering Journal,2021,410:128288. doi: 10.1016/j.cej.2020.128288
    [64] ZHANG F, REN D, ZHANG Y, et al. Production of highly-oriented graphite monoliths with high thermal conductivity[J]. Chemical Engineering Journal,2022,431:134102. doi: 10.1016/j.cej.2021.134102
    [65] ZHANG Y, WANG W, ZHANG F, et al. Micro-diamond assisted bidirectional tuning of thermal conductivity in multifunctional graphene nanoplatelets/nanofibrillated cellulose films[J]. Carbon,2022,189:265-275. doi: 10.1016/j.carbon.2021.12.067
    [66] XIE J W, ZHANG Y H, DAI J M, et al. Multifunctional MoSe2@MXene heterostructure-decorated cellulose fabric for wearable thermal therapy[J]. Small,2023,19(9):2205853. doi: 10.1002/smll.202205853
    [67] RAJAVEL K, LUO S B, WAN Y J, et al. 2D Ti3C2Tx MXene/polyvinylidene fluoride (PVDF) nanocomposites for attenuation of electromagnetic radiation with excellent heat dissipation[J]. Composites Part A: Applied Science and Manufacturing,2020,129:105693. doi: 10.1016/j.compositesa.2019.105693
    [68] GU J W, DU J J, DANG J, et al. Thermal conductivities, mechanical and thermal properties of graphite nanoplatelets/polyphenylene sulfide composites[J]. RSC Advances,2014,4(42):22101-22105. doi: 10.1039/C4RA01761G
    [69] YANG S Y, MA C C M, TENG C C, et al. Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites[J]. Carbon,2010,48(3):592-603. doi: 10.1016/j.carbon.2009.08.047
    [70] NEJAD S J, GOLZARY A. Investigation and modeling of the thermal conductivity of PP/clay nanocomposites and PP/MWCNT nanocomposites[J]. E-Polymers,2010,10(1):1062.
    [71] KUMAR B R, BASHEER N S, JACOB S, et al. Thermal-lens probing of the enhanced thermal diffusivity of gold nanofluid-ethylene glycol mixture[J]. Journal of Thermal Analysis and Calorimetry,2015,119(1):453-460. doi: 10.1007/s10973-014-4208-2
    [72] ZHAO W, LI J J, JIN K X, et al. Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering[J]. Materials Science and Engineering: C,2016,59:1181-1194. doi: 10.1016/j.msec.2015.11.026
    [73] MCCULLEN S D, STEVENS D R, ROBERTS W A, et al. Morphological, electrical, and mechanical characterization of electrospun nanofiber mats containing multiwalled carbon nanotubes[J]. Macromolecules,2007,40(4):997-1003. doi: 10.1021/ma061735c
    [74] AKBARI A, HAMADANIAN M, JABBARI V, et al. Influence of PVDF concentration on the morphology, surface roughness, crystalline structure, and filtration separation properties of semicrystalline phase inversion polymeric membranes[J]. Desalination and Water Treatment,2012,46(1-3):96-106. doi: 10.1080/19443994.2012.677524
    [75] RIBEIRO C, SENCADAS V, RIBELLES J L G, et al. Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly(vinylidene fluoride) electrospun membranes[J]. Soft Materials,2010,8(3):274-287. doi: 10.1080/1539445X.2010.495630
    [76] ZHENG J F, HE A H, LI J X, et al. Polymorphism control of poly(vinylidene fluoride) through electrospinning[J]. Macromolecular Rapid Communications,2007,28(22):2159-2162. doi: 10.1002/marc.200700544
    [77] GU M H, ZHANG J, XIA Y, et al. Poly(vinylidene fluoride) crystallization behavior and membrane structure formation via thermally induced phase separation with benzophenone diluent[J]. Journal of Macromolecular Science, Part B,2007,47(1):180-191. doi: 10.1080/00222340701748628
    [78] BENZ M, EULER W B. Determination of the crystalline phases of poly(vinylidene fluoride) under different preparation conditions using differential scanning calorimetry and infrared spectroscopy[J]. Journal of Applied Polymer Science,2003,89(4):1093-1100. doi: 10.1002/app.12267
    [79] GREGORIO J, CESTARI M. Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride)[J]. Journal of Polymer Science Part B: Polymer Physics,1994,32(5):859-870. doi: 10.1002/polb.1994.090320509
    [80] KOBAYASHI M, TASHIRO K, TADOKORO H. Molecular vibrations of three crystal forms of poly(vinylidene fluoride)[J]. Macromolecules,1975,8(2):158-171. doi: 10.1021/ma60044a013
    [81] YANG D D, XU H P, YU W, et al. Dielectric properties and thermal conductivity of graphene nanoplatelet filled poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) blend[J]. Journal of Materials Science: Materials in Electronics,2017,28(17):13006-13012. doi: 10.1007/s10854-017-7132-y
    [82] CAO Y, DENG Q H, LIU Z D, et al. Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets of MXene[J]. RSC Advances,2017,7(33):20494-20501. doi: 10.1039/C7RA00184C
    [83] HE F A, LIN K, SHI D L, et al. Preparation of organosilicate/PVDF composites with enhanced piezoelectricity and pyroelectricity by stretching[J]. Composites Science and Technology,2016,137:138-147. doi: 10.1016/j.compscitech.2016.10.031
    [84] HONG S M, HWANG S S. Physical properties of thin PVDF/MWNT (multi-walled carbon nanotube) composite films by melt blending[J]. Journal of Nanoscience and Nanotechnology,2008,8(9):4860-4863. doi: 10.1166/jnn.2008.IC49
    [85] CHEN J, HUANG X Y, SUN B, et al. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability[J]. ACS Nano,2019,13(1):337-345. doi: 10.1021/acsnano.8b06290
    [86] GUO H, LI X, LI B A, et al. Thermal conductivity of graphene/poly(vinylidene fluoride) nanocomposite membrane[J]. Materials & Design,2017,114:355-363.
    [87] YAO T, ZHOU W Y, PENG W W, et al. Insights into concomitant enhancements of dielectric properties and thermal conductivity of PVDF composites filled with core@double-shell structured Zn@ZnO@PS particles[J]. Journal of Applied Polymer Science,2022,139(44):e53069.
    [88] ZHOU Y, WANG H, XIANG F, et al. A poly(vinylidene fluoride) composite with added self-passivated microaluminum and nanoaluminum particles for enhanced thermal conductivity[J]. Applied Physics Letters,2011,98(18):182906. doi: 10.1063/1.3580588
    [89] ZHOU W Y, GONG Y, TU L T, et al. Dielectric properties and thermal conductivity of core-shell structured Ni@NiO/poly(vinylidene fluoride) composites[J]. Journal of Alloys and Compounds,2017,693:1-8. doi: 10.1016/j.jallcom.2016.09.178
    [90] ZHOU W Y, LI X, ZHANG F, et al. Concurrently enhanced dielectric properties and thermal conductivity in PVDF composites with core-shell structured β-SiCw@SiO2 whiskers[J]. Composites Part A: Applied Science and Manufacturing,2020,137:106021. doi: 10.1016/j.compositesa.2020.106021
    [91] CHEN X L, LIM J S K, YAN W L, et al. Salt template assisted BN scaffold fabrication toward highly thermally conductive epoxy composites[J]. ACS Applied Materials & Interfaces,2020,12(14):16987-16996.
    [92] RAM R, SONI V, KHASTGIR D. Electrical and thermal conductivity of polyvinylidene fluoride (PVDF)-conducting carbon black (CCB) composites: Validation of various theoretical models[J]. Composites Part B: Engineering,2020,185:107748. doi: 10.1016/j.compositesb.2020.107748
    [93] MA H Y, QIN C, JIN B H, et al. Using a supercritical fluid-assisted thin cell wall stretching-defoaming method to enhance the nanofiller dispersion, EMI shielding, and thermal conduction property of CNF/PVDF nanocomposites[J]. Industrial & Engineering Chemistry Research,2022,61(10):3647-3659.
    [94] CLAUSI M, GRASSELLI S, MALCHIODI A, et al. Thermally conductive PVDF-graphene nanoplatelet (GnP) coatings[J]. Applied Surface Science,2020,529:147070. doi: 10.1016/j.apsusc.2020.147070
    [95] ZHANG P, DING X, WANG Y Y, et al. Segregated double network enabled effective electromagnetic shielding composites with extraordinary electrical insulation and thermal conductivity[J]. Composites Part A: Applied Science and Manufacturing,2019,117:56-64. doi: 10.1016/j.compositesa.2018.11.007
    [96] GUAN C L, QIN Y E, WANG B, et al. Highly thermally conductive polymer composites with barnacle-like nano-crystalline diamond@silicon carbide hybrid architecture[J]. Composites Part B: Engineering,2020,198:108167. doi: 10.1016/j.compositesb.2020.108167
    [97] SONG Q S, ZHU W, DENG Y, et al. Synergetic optimization of thermal conductivity and breakdown strength of boron nitride/poly (vinylidene fluoride) composite film with sandwich intercalated structure for heat management in flexible electronics[J]. Composites Part A: Applied Science and Manufacturing,2020,135:105933. doi: 10.1016/j.compositesa.2020.105933
    [98] HU B, GUO H, WANG Q, et al. Enhanced thermal conductivity by constructing 3D-networks in poly(vinylidene fluoride) composites via positively charged hexagonal boron nitride and silica coated carbon nanotubes[J]. Composites Part A: Applied Science and Manufacturing,2020,137:106038. doi: 10.1016/j.compositesa.2020.106038
    [99] SONG Q S, ZHU W, DENG Y, et al. Enhanced through-plane thermal conductivity and high electrical insulation of flexible composite films with aligned boron nitride for thermal interface material[J]. Composites Part A: Applied Science and Manufacturing,2019,127:105654. doi: 10.1016/j.compositesa.2019.105654
    [100] JUNG H, YU S, BAE N S, et al. High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube[J]. ACS Applied Materials & Interfaces,2015,7(28):15256-15262.
    [101] DU C Y, LI M, CAO M, et al. Enhanced thermal and mechanical properties of polyvinlydene fluoride composites with magnetic oriented carbon nanotube[J]. Carbon,2018,126:197-207. doi: 10.1016/j.carbon.2017.10.027
    [102] ZHANG F, FENG Y Y, QIN M M, et al. Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite[J]. Advanced Functional Materials,2019,29(25):1901383. doi: 10.1002/adfm.201901383
    [103] ZHANG F, FENG Y Y, QIN M M, et al. Stress-sensitive thermally conductive elastic nanocomposite based on interconnected graphite-welded carbon nanotube sponges[J]. Carbon,2019,145:378-388. doi: 10.1016/j.carbon.2019.01.031
    [104] ZHANG H, HE Q X, YU H T, et al. A bioinspired polymer-based composite displaying both strong adhesion and anisotropic thermal conductivity[J]. Advanced Functional Materials,2023,33(18):2211985. doi: 10.1002/adfm.202211985
    [105] ZHANG P, ZHANG X, DING X, et al. Improving thermal conductivity of polyvinylidene fluoride/low-melting-point alloy with segregated structure induced by incorporation of silver interface layer[J]. Journal of Polymer Research,2022,29(9):1-12.
    [106] ZHANG Z, CAO M, CHEN P, et al. Improvement of the thermal/electrical conductivity of PA6/PVDF blends via selective MWCNTs-NH2 distribution at the interface[J]. Materials & Design,2019,177:107835.
    [107] HUANG L J, QU Y T, HUANG Z X, et al. Enhancing thermal conductivity of segregated structural PE/PVDF/BN composites: Role of viscosities[J]. Composites Part A: Applied Science and Manufacturing,2022,156:106893. doi: 10.1016/j.compositesa.2022.106893
    [108] ZENG X L, YAO Y M, GONG Z Y, et al. Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement[J]. Small,2015,11(46):6205-6213. doi: 10.1002/smll.201502173
    [109] WANG R, XIE C Z, GOU B, et al. Significant thermal conductivity enhancement of polymer nanocomposites at low content via graphene aerogel[J]. Materials Letters,2021,305:130771. doi: 10.1016/j.matlet.2021.130771
    [110] ZHANG F, FENG Y Y, FENG W. Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms[J]. Materials Science and Engineering: R: Reports,2020,142:100580. doi: 10.1016/j.mser.2020.100580
    [111] LEI B W, BAI S X, LIANG G Y, et al. Three-dimensional boron nitride reinforced thermal conductive composites with high elasticity[J]. Journal of Alloys and Compounds,2022,922:166046. doi: 10.1016/j.jallcom.2022.166046
    [112] 宋莎莎. 聚偏氟乙烯基导热复合材料的制备与性能研究[D]. 天津: 天津大学, 2020.

    SONG Shasha. Preparation and properties of poly(vinylidene fluoride)-based thermal conductive composites[D]. Tianjin: Tianjin University, 2020(in Chinese).
    [113] GUO B C, TANG Z H, ZHANG L Q. Transport performance in novel elastomer nanocomposites: Mechanism, design and control[J]. Progress in Polymer Science,2016,61:29-66. doi: 10.1016/j.progpolymsci.2016.06.001
    [114] DANG T M L, KIM C Y, ZHANG Y M, et al. Enhanced thermal conductivity of polymer composites via hybrid fillers of anisotropic aluminum nitride whiskers and isotropic spheres[J]. Composites Part B: Engineering,2017,114:237-246. doi: 10.1016/j.compositesb.2017.02.008
    [115] HUANG C L, QIAN X, YANG R G. Thermal conductivity of polymers and polymer nanocomposites[J]. Materials Science and Engineering: R: Reports,2018,132:1-22. doi: 10.1016/j.mser.2018.06.002
    [116] WANG J Q, HU L, LI W H, et al. Development and perspectives of thermal conductive polymer composites[J]. Nanomaterials,2022,12(20):3574. doi: 10.3390/nano12203574
    [117] LI Y, HUANG X Y, HU Z W, et al. Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites[J]. ACS Applied Materials & Interfaces,2011,3(11):4396-4403.
    [118] 石贤斌, 张帅, 陈超, 等. 氮化硼纳米片的绿色制备及在导热复合材料中的应用[J]. 复合材料学报, 2023, 40(8):4563-4572.

    SHI Xianbin, ZHANG Shuai, CHEN Chao, et al. Green preparation of boron nitride nanosheets and their application in thermal conductivity composites[J]. Acta Materiae Compositae Sinica,2023,40(8):4563-4572(in Chinese).
    [119] CAI Y, YU H T, CHEN C, et al. Improved thermal conductivities of vertically aligned carbon nanotube arrays using three-dimensional carbon nanotube networks[J]. Carbon,2022,196:902-912. doi: 10.1016/j.carbon.2022.05.050
    [120] WANG Z G, HUANG Y F, ZHANG G Q, et al. Enhanced thermal conductivity of segregated poly(vinylidene fluoride) composites via forming hybrid conductive network of boron nitride and carbon nanotubes[J]. Industrial & Engineering Chemistry Research,2018,57(31):10391-10397.
    [121] RUAN K, SHI X, GUO Y, et al. Interfacial thermal resistance in thermally conductive polymer composites: A review[J]. Composites Communications,2020,22:100518. doi: 10.1016/j.coco.2020.100518
    [122] HASSAN E A M, YANG L L, ELAGIB T H H, et al. Synergistic effect of hydrogen bonding and π-π stacking in interface of CF/PEEK composites[J]. Composites Part B: Engineering,2019,171:70-77. doi: 10.1016/j.compositesb.2019.04.015
    [123] IKRAMULLAH, RIZAL S, NAKAI Y, et al. Evaluation of interfacial fracture toughness and interfacial shear strength of Typha spp. fiber/polymer composite by double shear test method[J]. Materials,2019,12(14):2225. doi: 10.3390/ma12142225
    [124] KIM H S, JANG J U, LEE H, et al. Thermal management in polymer composites: A review of physical and structural parameters[J]. Advanced Engineering Materials,2018,20(10):1800204. doi: 10.1002/adem.201800204
    [125] PAN C, KOU K C, JIA Q, et al. Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent[J]. Composites Part B: Engineering,2017,111:83-90. doi: 10.1016/j.compositesb.2016.11.050
    [126] LI G H, XING R F, GENG P P, et al. Surface modification of boron nitride via poly (dopamine) coating and preparation of acrylonitrile-butadiene-styrene copolymer/boron nitride composites with enhanced thermal conductivity[J]. Polymers for Advanced Technologies,2018,29(1):337-346. doi: 10.1002/pat.4119
    [127] JIANG Y E, LIU Y J, MIN P, et al. BN@PPS core-shell structure particles and their 3D segregated architecture composites with high thermal conductivities[J]. Composites Science and Technology,2017,144:63-69. doi: 10.1016/j.compscitech.2017.03.023
    [128] HUANG X Y, ZHI C Y, JIANG P K, et al. Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: An ideal dielectric material with high thermal conductivity[J]. Advanced Functional Materials,2013,23(14):1824-1831. doi: 10.1002/adfm.201201824
    [129] XU Y S, CHUNG D D L, MROZ C. Thermally conducting aluminum nitride polymer-matrix composites[J]. Composites Part A: Applied Science and Manufacturing,2001,32(12):1749-1757. doi: 10.1016/S1359-835X(01)00023-9
    [130] WANG B, YIN X H, PENG D, et al. Highly thermally conductive PVDF-based ternary dielectric composites via engineering hybrid filler networks[J]. Composites Part B: Engineering,2020,191:107978. doi: 10.1016/j.compositesb.2020.107978
    [131] SONG S S, CAO M, SHAN H T, et al. Polyhedral oligomeric silsesquioxane functionalized carbon nanotubes for high thermal conductive poly(vinylidene fluoride) composite membrane[J]. Materials & Design,2018,156:242-251.
    [132] LIANG J C, LUO J W, ZHANG J X, et al. Constructing a high-density thermally conductive network through electrospinning-hot-pressing of BN@PDA/GO/PVDF composites[J]. ACS Applied Polymer Materials,2022,4(4):2414-2422. doi: 10.1021/acsapm.1c01705
    [133] ZHANG W B, ZHANG Z X, YANG J H, et al. Largely enhanced thermal conductivity of poly(vinylidene fluoride)/carbon nanotube composites achieved by adding graphene oxide[J]. Carbon,2015,90:242-254. doi: 10.1016/j.carbon.2015.04.040
    [134] ZHOU W Y, ZHANG F, YUAN M X, et al. Improved dielectric properties and thermal conductivity of PVDF composites filled with core-shell structured Cu@CuO particles[J]. Journal of Materials Science: Materials in Electronics,2019,30(20):18350-18361. doi: 10.1007/s10854-019-02189-w
    [135] XIE L Y, HUANG X Y, YANG K, et al. “Grafting to” route to PVDF-HFP-GMA/BaTiO3 nanocomposites with high dielectric constant and high thermal conductivity for energy storage and thermal management applications[J]. Journal of Materials Chemistry A,2014,2(15):5244-5251. doi: 10.1039/c3ta15156e
    [136] ZHANG F, ZHOU W Y, ZHANG C H, et al. Toward enhancing dielectric properties and thermal conductivity of f-Cu/PVDF with PS as an interlayer[J]. Polymer-Plastics Technology and Materials,2021,60(6):680-693. doi: 10.1080/25740881.2020.1851377
    [137] 李欣, 李保安, 王世昌. 氧化石墨烯/聚偏氟乙烯复合膜研究[J]. 化学工业与工程, 2014, 31(4):26-30.

    LI Xin, LI Baoan, WANG Shichang. Graphene oxide/polyvinylidenefluride(PVDF) films[J]. Chemical Industry and Engineering,2014,31(4):26-30(in Chinese).
    [138] 裴丽霞, 王雪银, 徐建昌, 等. 微纳米复合导热材料的制备及导热性能[J]. 化工新型材料, 2017, 45(2):228-229, 232.

    PEI Lixia, WANG Xueyin, XU Jianchang, et al. Preparation and property of thermal conductive micro-nanocompo-site[J]. New Chemical Materials,2017,45(2):228-229, 232(in Chinese).
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1052
  • HTML全文浏览量:  810
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-11
  • 修回日期:  2023-07-11
  • 录用日期:  2023-07-25
  • 网络出版日期:  2023-08-14
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回