Abstract:
Currently, the models for predicting the tensile modulus of bast fiber reinforced composites have not considered unique lumen microstructure of bast fibers. Therefore, in the present work, an equivalent model of lumen-bast fiber and its theoretical formula for calculating the elastic modulus were proposed in this study by combining the rule of mixture and Micro-CT technology. On this basis, a representative volume element (RVE) model of ramie fiber reinforced composite (RFPC) which considered lumen microstructures was established using multiscale simulation method, and its tensile modulus was computed. The validity of the RVE model was verified by experimental results. Additionally, the influence weights of four parameters (fiber content, fiber lumen ratio, fiber orientation, and aspect ratio) on the tensile elastic modulus of RFPC were investigated using orthogonal experimental design and variance analysis. It was found that fiber content and fiber orientation are the primary factors affecting the tensile modulus of RFPCs. A polynomial fitting method was employed to obtain a predictive equation for estimating the tensile modulus of RFPC using these four parameters as independent variables. The main effects and synergistic effects of parameters on the tensile modulus of RFPC were systematically analyzed. This research provides a prediction method for estimating the tensile modulus of lumen-bast fiber reinforced composites and can be served as a theoretical basis for controlling their tensile performance.