Volume 39 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
ZU Lei, XU Hui, ZHANG Qian, et al. Sectionalization-based reinforcement optimization of composite-wound case dome through multi-island genetic algorithm[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3616-3628. doi: 10.13801/j.cnki.fhclxb.20210819.004
Citation: ZU Lei, XU Hui, ZHANG Qian, et al. Sectionalization-based reinforcement optimization of composite-wound case dome through multi-island genetic algorithm[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3616-3628. doi: 10.13801/j.cnki.fhclxb.20210819.004

Sectionalization-based reinforcement optimization of composite-wound case dome through multi-island genetic algorithm

doi: 10.13801/j.cnki.fhclxb.20210819.004
  • Received Date: 2021-06-18
  • Accepted Date: 2021-08-06
  • Rev Recd Date: 2021-07-23
  • Available Online: 2021-08-20
  • Publish Date: 2022-07-30
  • The hydrostatic tests for the Ф150 mm composite-wound cases with unequal poler openings were carried out. In order to precisely predict the failure modes, burst position and the burst pressure of the composite cases, the progressive damage model based on the 3D Hashin failure criteria was established and its reliability was evaluated by experimental results. Based on the finite element model, the sectionalization-based reinforcement optimization model through multi-island genetic algorithm was established to optimize the reinforcing layers and angles according to the stress distribution on domes. The influence mechanism of the reinforcing angles in different subareas and its coupling effect on the fiber stress were revealed and then the optimal reinforcing angles and layers were obtained. In addition, the subareaalization-based reinforcement test was implemented to validate the optimization model. The results of the numerical model show that the reinforcing angle from the equator of the dome to the shoulder of the metal boss has a more significant effect on the fiber stress and the relative small angle should be employed to reinforce domes; however, the relative large reinforcing angle in the subarea ranging from the poler openings to the shoulder of the boss should be applied to reinforce the axial and circumferential directions. The results of hydraulic burst test of the reinforcing case show that the burst pressure and the performance factor increase by 37.5% and 16.6%, respectively, compared with that of composite case without reinforcement, which indicates that the optimization model is accurate and reliable.

     

  • loading
  • [1]
    HAYMES R, GAL E. Transient thermal multiscale analysis for rocket motor case: Mechanical homogenization approach[J]. Journal of Thermophysics and Heat Transfer,2017,31(2):324-336. doi: 10.2514/1.T4929
    [2]
    鲁昊钺, 徐晓卫, 郑庆, 等. 带药缠绕复合材料壳体张力分析及优化研究[J]. 固体火箭技术, 2021, 44(5):574-580.

    LU Haoyue, XU Xiaowei, ZHENG Qing, et al. Tension analysis and optimum of winding composite cases with grain core mandrel[J]. Journal of Solid Rocket Technology,2021,44(5):574-580(in Chinese).
    [3]
    熊健, 李志彬, 刘惠彬, 等. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报, 2021, 38(6):1629-1650.

    XIONG Jian, LI Zhibin, LIU Huibin, et al. Advances in aerospace lightweight composite shell structure[J]. Acta Materiae Compositae Sinica,2021,38(6):1629-1650(in Chinese).
    [4]
    冯彬彬, 袁金, 胡旭辉, 等. 大长径比固体火箭发动机壳体轻量化设计[J]. 复合材料科学与工程, 2021(5):43-48.

    FENG Binbin, YUAN Jin, HU Xuhui, et al. Lightweight design of solid rocket motor case with large aspect ratio[J]. Composites Science and Engineering,2021(5):43-48(in Chinese).
    [5]
    李莹新, 莫纪安, 王秀云, 等. 固体火箭发动机壳体复合材料研究进展[J]. 航天制造技术, 2020, 222(4):69-73.

    LI Yingxin, MO Ji’an, WANG Xiuyun, et al. Progress of composite for solid rocket motor case[J]. Aerospace Manufacturing Technology,2020,222(4):69-73(in Chinese).
    [6]
    NIHARIKA B, VARMA B B. Design and analysis of composite rocket motor casing[J]. IOP Conference Series Materials Science and Engineering,2018,455:012034. doi: 10.1088/1757-899X/455/1/012034
    [7]
    耿宇欣, 强洪夫, 王路仙. 复合材料壳体封头补强技术研究[J]. 纤维复合材料, 2007, 24(4):23-26. doi: 10.3969/j.issn.1003-6423.2007.04.007

    GENG Yuxin, QIANG Hongfu, WANG Luxian. Development on dome reinforcement of composite case[J]. Fiber Composites,2007,24(4):23-26(in Chinese). doi: 10.3969/j.issn.1003-6423.2007.04.007
    [8]
    GEORGE K, PANDA B P, MOHANTY S, et al. Recent developments in elastomeric heat shielding materials for solid rocket motor casing application for future perspective[J]. Polymers for Advanced Technologies,2018,29(1):8-21. doi: 10.1002/pat.4101
    [9]
    ROH H S, HUA T Q, AHLUWALIA R K. Optimization of carbon fiber usage in type 4 hydrogen storage tanks for fuel cell automobiles[J]. International Journal of Hydrogen Energy,2013,38(29):12795-12802. doi: 10.1016/j.ijhydene.2013.07.016
    [10]
    张军, 汪宁. 大型玻璃纤维_环氧复合材料壳体开孔补强工艺技术研究[J]. 航天制造技术, 2007(4):31-34.

    ZHANG Jun, WANG Ning. Study on opening reinforcement technology of large glass fiber/epoxy composite coase[J]. Aerospace Manufacturing Technology,2007(4):31-34(in Chinese).
    [11]
    王欢, 刘勇琼, 廖英强, 等. 碳纤维/环氧复合材料壳体补强新工艺及方法对比研究[J]. 宇航材料工艺, 2013, 2(2):88-91. doi: 10.3969/j.issn.1007-2330.2013.02.020

    WANG Huan, LIU Yongqiong, LIAO Yingqiang, et al. Comparison with new reinforcement technology of carbon/epoxy composite case[J]. Aerospace Materials & Technology,2013,2(2):88-91(in Chinese). doi: 10.3969/j.issn.1007-2330.2013.02.020
    [12]
    吕广普, 刘洪上, 杜相荣. 大直径纤维缠绕水容器封头增强研究[J]. 纤维复合材料, 2015(4):8-11. doi: 10.3969/j.issn.1003-6423.2015.04.002

    LÜ Guangpu, LIU Hongshang, DU Xiangrong. Study on the reinforcement of the end closure of large diameter filament winding water treatment vessels[J]. Fiber Composites,2015(4):8-11(in Chinese). doi: 10.3969/j.issn.1003-6423.2015.04.002
    [13]
    周伟江, 廖英强, 张世杰, 等. T800HB_环氧复合材料壳体爆破性能分析[J]. 宇航材料工艺, 2014, 44(3):95-97.

    ZHOU Weijiang, LIAO Yingqiang, ZHANG Shijie, et al. Analysis on burst pressure of T800HB/epoxy composite case[J]. Aerospace Materials & Technology,2014,44(3):95-97(in Chinese).
    [14]
    张世杰, 王汝敏, 廖英强, 等. T800HB碳纤维复合材料壳体定量化等强度补强技术[J]. 宇航材料工艺, 2018, 48(3):51-55. doi: 10.12044/j.issn.1007-2330.2018.03.011

    ZHANG Shijie, WANG Rumin, LIAO Yingqiang, et al. Quantitative isostrength reinforcement of composite case made of T800HB carbon fiber[J]. Aerospace Materials & Technology,2018,48(3):51-55(in Chinese). doi: 10.12044/j.issn.1007-2330.2018.03.011
    [15]
    关云, 宋学宇, 贾有军, 等. 炭纤维复合材料壳体封头新型环向补强的数值模拟及试验[J]. 固体火箭技术, 2018, 41(3):356-362, 382.

    GUAN Yun, SONG Xueyu, JIA Youjun, et al. Experimental and simlation investigation on a novel hoop reinforcement of carbon filament-wound composite case dome[J]. Journal of Solid Rocket Technology,2018,41(3):356-362, 382(in Chinese).
    [16]
    ZHANG Q, XU H, JIA X L, et al. Design of a 70MPa type IV hydrogen storage vessel using accurate modeling techniques for dome thickness prediction[J]. Composite Structures,2020,236:111915. doi: 10.1016/j.compstruct.2020.111915
    [17]
    VAN HIEN D, NGOC THANH T, TUNG LAM V, et al. Design of planar wound composite vessel based on preventing slippage tendency of fibers[J]. Composite Structures,2020,254:112854. doi: 10.1016/j.compstruct.2020.112854
    [18]
    LIN S, YANG L, XU H, et al. Progressive damage analysis for multiscale modelling of composite pressure vessels based on Puck failure criterion[J]. Composite Structures,2021,255:113046. doi: 10.1016/j.compstruct.2020.113046
    [19]
    HU Z Y, CHEN M H, ZU L. Investigation on failure behaviors of 70 MPa Type IV carbon fiber overwound hydrogen storage vessels[J]. Composite Structures,2020,259(9):113387.
    [20]
    ZU L, XU H, JIA X L, et al. Winding path design based on mandrel profile updates of composite pressure vessels[J]. Composite Structures,2020,235:111766.
    [21]
    崔浩, 闫群, 王向明, 等. 激光选区熔化成形铝合金板与CFR_省略_合板螺栓连接结构失效分析方法评估[J]. 复合材料学报, 2017, 12:126-133.

    CUI Hao, YAN Qun, WANG Xiangming, et al. Assessment of failure analysis method for the bolted structure betwween selective laser melting aluminum plate and CFRP composite laminate[J]. Acta Materiae Compositae Sinica,2017,12:126-133(in Chinese).
    [22]
    吕青泉, 赵振强, 李超, 等. 2.5D机织复合材料的渐进损伤与失效模拟[J]. 复合材料学报, 2021, 38(8):2758-2768.

    LÜ Qingquan, ZHAO Zhenqiang, LI Chao, et al. Progressive damage and failure simulation of 2.5D woven composites[J]. Acta Materiae Compositae Sinica,2021,38(8):2758-2768(in Chinese).
    [23]
    SONG B, LYU D, JIANG J. Optimization of composite ring stiffened cylindrical hulls for unmanned underwater vehicles using multi-island genetic algorithm[J]. Journal of Reinforced Plastics and Composites,2018,37(10):668-684. doi: 10.1177/0731684418760203
    [24]
    NIU Y R, XU X W, GUO S X. Structural optimization design of a typical adhesive bonded honeycomb-core sandwich T-joint in side bending using multi-island genetic algorithm[J]. Applied Composite Materials,2021,28:1039-1066.
    [25]
    LIU Z H, TIAN S L, ZENG Q L, et al. Optimization design of curved outrigger structure based on buckling analysis and multi-island genetic algorithm[J]. Science Progress,2021,104(2):368504211023277.
    [26]
    REN P H, MENG S H, YI W M. Scheduling technology of satellites parallel final assembly based on Multi-island Genetic Algorithm[J]. Journal of Physics: Conference Series,2021,1650(3):032201.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(5)

    Article Metrics

    Article views (1315) PDF downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return