Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
LIU Yuhui, LIU Shilin, WU Congying, et al. Preparation and performance of balsa wood-based carbon sponge/TPU composite pressure sensor[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5716-5725. doi: 10.13801/j.cnki.fhclxb.20230202.001
Citation: LIU Yuhui, LIU Shilin, WU Congying, et al. Preparation and performance of balsa wood-based carbon sponge/TPU composite pressure sensor[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5716-5725. doi: 10.13801/j.cnki.fhclxb.20230202.001

Preparation and performance of balsa wood-based carbon sponge/TPU composite pressure sensor

doi: 10.13801/j.cnki.fhclxb.20230202.001
Funds:  National Natural Science Foundation of China (52090033; 52090030)
  • Received Date: 2022-10-28
  • Accepted Date: 2023-01-09
  • Rev Recd Date: 2022-12-04
  • Available Online: 2023-02-02
  • Publish Date: 2023-10-15
  • In recent years, flexible pressure sensors with three-dimensional mesh structure show high reversible compressibility and good sensitivity, and their complex network shape is also conducive to the construction of stable conductive network, which is widely used in human health monitoring, wearable devices, medical diagnosis and other fields. In this study, a carbonized wood sponge (CWS)/thermoplastic polyurethane elastomers (TPU) composite pressure sensor with three-dimensional layered structure based on natural balsa wood was designed to construct a stable three-dimensional conductive network and optimize the sensing performance. The catalytic treatment, carbonization process, sensing performance and human applicability of the sensor were characterized. The results show that the carbon yield of the light wood-based CWS/TPU sensor by catalytic treatment and high temperature carbonization can reach 20.15%, the compressive strain can reach at 60%, and the maximum pressure sensing sensitivity can reach 12.87 kPa−1 in the pressure range of 0-4 kPa. Moreover, the sensor still has good sensing stability and environmental stability even after 5000 compression/release cycles, showing good sensing performance. The sensor is successfully used to monitor hand movement, walking and pulse in real time, which shows the potential application value of the sensor in motion and health monitoring.

     

  • loading
  • [1]
    CHORTOS A, LIU J, BAO Z. Pursuing prosthetic electronic skin[J]. Nature Materials,2016,15(9):937-950. doi: 10.1038/nmat4671
    [2]
    WANG X W, LIU Z, ZHANG T. Flexible sensing electronics for wearable/attachable health monitoring[J]. Small,2017,13(25):1602790. doi: 10.1002/smll.201602790
    [3]
    LI S, XIAO X, HU J, et al. Recent advances of carbon-based flexible strain sensors in physiological signal monitoring[J]. ACS Applied Electronic Materials,2020,2(8):2282-2300. doi: 10.1021/acsaelm.0c00292
    [4]
    胡海龙, 马亚伦, 张帆, 等. 柔性纳米复合材料压阻式应变传感器的研究进展[J]. 复合材料学报, 2022, 39(1):1-22.

    HU Hailong, MA Yalun, ZHANG Fan, et al. Research progress of flexible nanocomposites for piezoresistive strain sensors[J]. Acta Materiae Compositae Sinica,2022,39(1):1-22(in Chinese).
    [5]
    GAO Y, XIAO T, LI Q, et al. Flexible microstructured pressure sensors: Design, fabrication and applications[J]. Nanotechnology,2022,33(32):322002. doi: 10.1088/1361-6528/ac6812
    [6]
    YANG R, CHANG Y, YANG X, et al. Electromechanical sorting method for improving the sensitivity of micropyramid carbon nanotube film flexible force sensor[J]. Composites Part B: Engineering,2021,217:108818. doi: 10.1016/j.compositesb.2021.108818
    [7]
    YANG S, ZHANG C, JI J, et al. Performance improvement of flexible pressure sensor based on ordered hierarchical structure array[J]. Advanced Materials Technologies,2022,7(11):2200309. doi: 10.1002/admt.202200309
    [8]
    ZHANG X, HU Y, GU H, et al. A highly sensitive and cost-effective flexible pressure sensor with micropillar arrays fabricated by novel metal-assisted chemical etching for wearable electronics[J]. Advanced Materials Technologies,2019,4(9):1900367. doi: 10.1002/admt.201900367
    [9]
    JIAN M, XIA K, WANG Q, et al. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures[J]. Advanced Functional Materials,2017,27(9):1606066. doi: 10.1002/adfm.201606066
    [10]
    SHI J, WANG L, DAI Z, et al. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range[J]. Small,2018,14(27):1800819. doi: 10.1002/smll.201800819
    [11]
    TANG X, WU C, GAN L, et al. Multilevel microstructured flexible pressure sensors with ultrahigh sensitivity and ultrawide pressure range for versatile electronic skins[J]. Small,2019,15(10):1804559. doi: 10.1002/smll.201804559
    [12]
    DING Y, XU T, ONYILAGHA O, et al. Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges[J]. ACS Applied Materials & Interfaces,2019,11(7):6685-6704. doi: 10.1021/acsami.8b20929
    [13]
    HU Y, CHEN Z, ZHUO H, et al. Advanced compressible and elastic 3D monoliths beyond hydrogels[J]. Advanced Functional Materials,2019,29(44):1904472. doi: 10.1002/adfm.201904472
    [14]
    WANG X, YU J, CUI Y, et al. Research progress of flexible wearable pressure sensors[J]. Sensors and Actuators A: Physical,2021,330:112838. doi: 10.1016/j.sna.2021.112838
    [15]
    CHEN S, CHEN Y, LI D, et al. Flexible and sensitivity-adjustable pressure sensors based on carbonized bacterial nanocellulose/wood-derived cellulose nanofibril composite aerogels[J]. ACS Applied Materials & Interfaces,2021,13(7):8754-8763. doi: 10.1021/acsami.0c21392
    [16]
    苟巧林, 李燕, 李宏章, 等. 碳纳米管复合亚麻纤维柔性传感材料的制备[J]. 复合材料学报, 2021, 38(7):2244-2253.

    GOU Qiaolin, LI Yan, LI Hongzhang, et al. Preparation of flexible sensing material of flax fiber combined carbon nanotubes[J]. Acta Materiae Compositae Sinica,2021,38(7):2244-2253(in Chinese).
    [17]
    CHANG S N, LI J, HE Y, et al. A high-sensitivity and low-hysteresis flexible pressure sensor based on carbonized cotton fabric[J]. Sensors and Actuators A: Physical,2019,294:45-53. doi: 10.1016/j.sna.2019.05.011
    [18]
    GAO L, ZHU C, LI L, et al. All paper-based flexible and wearable piezoresistive pressure sensor[J]. ACS Applied Materials & Interfaces,2019,11(28):25034-25042.
    [19]
    LIU X, LI Y, SUN X, et al. Off/on switchable smart electromagnetic interference shielding aerogel[J]. Matter,2021,4(5):1735-1747. doi: 10.1016/j.matt.2021.02.022
    [20]
    GUAN H, MENG J, CHENG Z, et al. Processing natural wood into a high-performance flexible pressure sensor[J]. ACS Applied Materials & Interfaces,2020,12(41):46357-46365.
    [21]
    TAN Y, LIU X, TANG W, et al. Flexible pressure sensors based on bionic microstructures: From plants to animals[J]. Advanced Materials Interfaces,2022,9(5):2101312. doi: 10.1002/admi.202101312
    [22]
    GUAN H, CHENG Z, WANG X. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents[J]. ACS Nano,2018,12(10):10365-10373. doi: 10.1021/acsnano.8b05763
    [23]
    ZHU M, YAN X, LEI Y, et al. An ultrastrong and antibacterial silver nanowire/aligned cellulose scaffold composite film for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2022,14(12):14520-14531. doi: 10.1021/acsami.1c23515
    [24]
    GUAN H, DAI X, NI L, et al. Highly elastic and fatigue-resistant graphene-wrapped lamellar wood sponges for high-performance piezoresistive sensors[J]. ACS Sustainable Chemistry & Engineering,2021,9(45):15267-15277.
    [25]
    CHEN C, SONG J, ZHU S, et al. Scalable and sustainable approach toward highly compressible, anisotropic, lamellar carbon sponge[J]. Chem,2018,4(3):544-554. doi: 10.1016/j.chempr.2017.12.028
    [26]
    HUANG Y, CHEN Y, FAN X Y, et al. Wood derived composites for high sensitivity and wide linear-range pressure sensing[J]. Small,2018,14(31):1801520. doi: 10.1002/smll.201801520
    [27]
    吴琪琳, 何敬宗, 赵雪, 等. 一种阻燃纤维素基预氧化纤维制品及其制备方法: 中国专利, ZL 202111323645.5[P]. 2022-08-12.

    WU Qilin, HE Jingzong, ZHAO Xue, et al. The invention relates to a flame retardant cellulose based preoxidized fiber product and a preparation method thereof: Chinese Patent, ZL 202111323645.5[P]. 2022-08-12(in Chinese).
    [28]
    ZHAI J, ZHANG Y, CUI C, et al. Flexible waterborne polyurethane/cellulose nanocrystal composite aerogels by integrating graphene and carbon nanotubes for a highly sensitive pressure sensor[J]. ACS Sustainable Chemistry & Engineering,2021,9(42):14029-14039.
    [29]
    LUO R, LI Z, WU X, et al. Super durable graphene aerogel inspired by deep-sea glass sponge skeleton[J]. Carbon,2022,191:153-163. doi: 10.1016/j.carbon.2022.01.055
    [30]
    LI G, CHU Z, GONG X, et al. A wide-range linear and stable piezoresistive sensor based on methylcellulose-reinforced, lamellar, and wrinkled graphene aerogels[J]. Advanced Materials Technologies,2022,7(5):2101021. doi: 10.1002/admt.202101021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (567) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return