Volume 41 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
SHEN Hao, ABULIMITI Mariyemu, LI Zhihui, et al. Advances in forming and numerical simulation research of tufted composite preforms[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4657-4675. doi: 10.13801/j.cnki.fhclxb.20240416.003
Citation: SHEN Hao, ABULIMITI Mariyemu, LI Zhihui, et al. Advances in forming and numerical simulation research of tufted composite preforms[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4657-4675. doi: 10.13801/j.cnki.fhclxb.20240416.003

Advances in forming and numerical simulation research of tufted composite preforms

doi: 10.13801/j.cnki.fhclxb.20240416.003
Funds:  National Natural Science Foundation of China (12202467); Natural Science Foundation of Jiangsu Province (BK20220597)
  • Received Date: 2024-01-30
  • Accepted Date: 2024-04-05
  • Rev Recd Date: 2024-03-29
  • Available Online: 2024-04-18
  • Publish Date: 2024-09-15
  • Three-dimensional composite materials have great application value in aerospace and other fields due to their excellent anti-delamination capability. In recent years, they have attracted extensive attention from domestical and abroad researchers. However, for the traditional three-dimensional (3D) composite materials, they require long manufacturing cycles, complex manufacturing technique and are hard to be formed. This has become one of the key challenges restricting the broad application of the 3D composite components. Tufting is a simple single-sided stitching technique characterized by non-interlocked structure. This feature probably allows three-dimensional preforms made by tufting to be shaped on curved surfaces without defects. Firstly, this paper outlines the development of tufting technology and the structural characteristics of tufted composite materials. Secondly, it reviews existing research on forming tufted preform with curved mold, focusing on three aspects: formability analysis, definition of forming defects, and digital characterization methods. It points out the progress made in current research and the shortcomings that still exist. Furthermore, it summarizes the numerical simulation methods for the forming process of tufted preform, highlighting the specific forming model of the tufted preform. Finally, it explores the future direction of tufting technology in the field of forming for composite materials.

     

  • loading
  • [1]
    MALLICK P K. Fiber-reinforced composites: Materials, manufacturing, and design[M]. CRC Press, 2007.
    [2]
    ZHENG H, ZHANG W, LI B, et al. Recent advances of interphases in carbon fiber-reinforced polymer composites: A review[J]. Composites Part B: Engineering, 2022, 233: 109639. doi: 10.1016/j.compositesb.2022.109639
    [3]
    XIE J, GUO Z, SHAO M, et al. Mechanics of textiles used as composite preforms: A review[J]. Composite Structures, 2023, 304: 116401. doi: 10.1016/j.compstruct.2022.116401
    [4]
    CAMPBELL F C. Manufacturing processes for advanced composites[M]. Elsevier, 2003.
    [5]
    YASAEE M, MOHAMED G, HALLETT S R. Interaction of Z-pins with multiple mode II delaminations in composite laminates[J]. Experimental Mechanics, 2016, 56: 1363-1372. doi: 10.1007/s11340-016-0175-9
    [6]
    CIAMPA F, LADANI R, KNOTT G, et al. Shape memory alloy tufted composites combining high delamination resistant and crack closure properties[J]. Composites Part A: Applied Science and Manufacturing, 2021, 147: 106455. doi: 10.1016/j.compositesa.2021.106455
    [7]
    JOHAR M, ISRAR H A, LOW K O, et al. Numerical simulation methodology for mode II delamination of quasi-isotropic quasi-homogeneous composite laminates[J]. Journal of Composite Materials, 2017, 51(28): 3955-3968. doi: 10.1177/0021998317695414
    [8]
    国义军, 曾磊, 张昊元, 等. HTV2第二次飞行试验气动热环境及失效模式分析[J]. 空气动力学学报, 2017, 35(4): 496-503. doi: 10.7638/kqdlxxb-2016.0114

    GUO Yijun, ZENG Lei, ZHANG Haoyuan, et al. Analysis of aerodynamic thermal environment and failure mode of HTV2 second flight test[J]. Acta Aerodynamica Sinica, 2017, 35(4): 496-503(in Chinese). doi: 10.7638/kqdlxxb-2016.0114
    [9]
    LI Z H, PENG A P, MA Q, et al. Gas-kinetic unified algorithm for computable modeling of Boltzmann equation and application to aerothermodynamics for falling disintegration of uncontrolled Tiangong-No. 1 spacecraft[J]. Advances in Aerodynamics, 2019, 1: 1-21. doi: 10.1186/s42774-019-0001-z
    [10]
    GAY D. Composite materials: Design and applications[M]. CRC press, 2022.
    [11]
    GEREKE T, CHERIF C. A review of numerical models for 3D woven composite reinforcements[J]. Composite Structures, 2019, 209: 60-66. doi: 10.1016/j.compstruct.2018.10.085
    [12]
    CARTIE D D, DELL’ANNO G, POULIN E, et al. 3D reinforcement of stiffener-to-skin T-joints by Z-pinning and tufting[J]. Engineering Fracture Mechanics, 2006, 73(16): 2532-2540. doi: 10.1016/j.engfracmech.2006.06.012
    [13]
    DRAKE D A, SULLIVAN R W, CLAY S B, et al. Influence of stitching on the fracture of stitched sandwich composites[J]. Composites Part A: Applied Science and Manufacturing, 2021, 145: 106383. doi: 10.1016/j.compositesa.2021.106383
    [14]
    刘苏骅, 李崇俊, 嵇阿琳. Tufting缝合复合材料预制体的成型与研究进展[J]. 航空制造技术, 2017, 60(14): 88-92.

    LIU Suhua, LI Chongjun, JI Alin. Manufacture and advances of tufting composite preform[J]. Aeronautical Manufacturing Technology, 2017, 60(14): 88-92(in Chinese).
    [15]
    杨宏宇, 吴宁, 王玉, 等. 复合材料Tufting缝合技术的研究进展[J]. 材料导报, 2021, 35(23): 23219-23228. doi: 10.11896/cldb.20070094

    YANG Hongyu, WU Ning, WANG Yu, et al. The application of tufting suture technology on composite structures: A review[J]. Materials Reports, 2021, 35(23): 23219-23228(in Chinese). doi: 10.11896/cldb.20070094
    [16]
    DELL’ANNO G, TREIBER J W G, PARTRIDGE I K. Manufacturing of composite parts reinforced through-thickness by tufting[J]. Robotics and Computer-Integrated Manufacturing, 2016, 37: 262-272. doi: 10.1016/j.rcim.2015.04.004
    [17]
    DELL’ANNO G, CARTIÉ D D, PARTRIDGE I K, et al. Exploring mechanical property balance in tufted carbon fabric/epoxy composites[J]. Composites part A: applied science and manufacturing, 2007, 38(11): 2366-2373. doi: 10.1016/j.compositesa.2007.06.004
    [18]
    DE VERDIERE M C, SKORDOS AA, WALTON A C, et al. Influence of loading rate on the delamination response of untufted and tufted carbon epoxy non-crimp fabric composites/Mode II[J]. Engineering Fracture Mechanics, 2012, 96: 1-10. doi: 10.1016/j.engfracmech.2011.12.011
    [19]
    SCARPONI C, PERILLO A M, CUTILLO L, et al. Advanced TTT composite materials for aeronautical purposes: Compression after impact (CAI) behaviour[J]. Composites Part B: Engineering, 2007, 38(2): 258-264. doi: 10.1016/j.compositesb.2006.03.014
    [20]
    CHEN C, LEGRAND X, HONG Y, et al. Investigation and prediction of laminate quality and interlaminar mechanical performance of the tufted sandwich composites with different core structures[J]. Composite Structures, 2023, 306: 116594. doi: 10.1016/j.compstruct.2022.116594
    [21]
    VERMA K K, VISWARUPACHARI C H, GADDIKERI K M, et al. Unfolding the effects of tuft density on compression after impact properties in unidirectional carbon/epoxy composite laminates[J]. Composite Structures, 2021, 258: 113378. doi: 10.1016/j.compstruct.2020.113378
    [22]
    吕侦军, 卢志毅, 陈庆民, 等. 高速变翼面飞行器研究现状及关键气动技术[J]. 空天技术, 2022, 10(6): 49-56.

    LV Zhenjun, LU Zhiyi, CHEN Qingmin, et al. Research status and key aerodynamic technology of high speed variable wing vehicle[J]. Aerospace Technology, 2022, 10(6): 49-56(in Chinese).
    [23]
    LIANG B, BOISSE P. A review of numerical analyses and experimental characterization methods for forming of textile reinforcements[J]. Chinese Journal of Aeronautics, 2021, 34(8): 143-163. doi: 10.1016/j.cja.2020.09.027
    [24]
    BOISSE P, HUANG J, GUZMAN-MALDONADO E. Analysis and modeling of wrinkling in composite forming[J]. Journal of Composites Science, 2021, 5(3): 81. doi: 10.3390/jcs5030081
    [25]
    吴刚, 赵龙, 高艳秋, 等. 缝合技术在复合材料液体成型预制体中的应用研究[J]. 航空制造技术, 2012, (Z2): 70-72.

    WU Gang, ZHAO Long, GAO Yanqiu, et al. Application research of stitching technology on fabric preform for the composites liquid forming[J]. Aeronautical Manufacturing Technology, 2012, (Z2): 70-72(in Chinese).
    [26]
    AZZOUZ R, ALLAOUI S, MOULART R. Composite preforming defects: a review and a classification[J]. International Journal of Material Forming, 2021, 14(6): 1259-1278. doi: 10.1007/s12289-021-01643-7
    [27]
    SHANWAN A, ALLAOUI S. Different experimental ways to minimize the preforming defects of multi-layered interlock dry fabric[J]. International Journal of Material Forming, 2019, 12: 69-78. doi: 10.1007/s12289-018-1407-6
    [28]
    YU F, CHEN S, HARPER L T, et al. Double diaphragm forming simulation using a global-to-local modelling strategy for detailed defect detection in large structures[J]. Composites Part A: Applied Science and Manufacturing, 2021, 147: 106457. doi: 10.1016/j.compositesa.2021.106457
    [29]
    LOMOV S V, ABAIMOV S G, BREITE C, et al. Inequality indices applied to statistical physics of criticality in an impregnated fiber bundle model[J]. Mechanics of Composite Materials, 2023, 59(5): 841-846. doi: 10.1007/s11029-023-10137-3
    [30]
    SCHÄFER F, WERNER H O, HENNING F, et al. A hyperelastic material model considering biaxial coupling of tension–compression and shear for the forming simulation of woven fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2023, 165: 107323. doi: 10.1016/j.compositesa.2022.107323
    [31]
    GONG Y, SONG Z, NING H, et al. A comprehensive review of characterization and simulation methods for thermo-stamping of 2D woven fabric reinforced thermoplastics[J]. Composites Part B: Engineering, 2020, 203: 108462. doi: 10.1016/j.compositesb.2020.108462
    [32]
    LIU L S, ZHANG T, WANG P, et al. Influence of the tufting yarns on formability of tufted 3-Dimensional composite reinforcement[J]. Composites Part A: Applied Science and Manufacturing, 2015, 78: 403-411. doi: 10.1016/j.compositesa.2015.07.014
    [33]
    SHEN H, WANG P, LEGRAND X, et al. Influence of the tufting pattern on the formability of tufted multi-layered preforms[J]. Composite Structures, 2019, 228: 111356. doi: 10.1016/j.compstruct.2019.111356
    [34]
    SHEN H, WANG P, LEGRAND X, et al. Characterisation and optimisation of wrinkling during the forming of tufted three-dimensional composite preforms[J]. Composites Part A: Applied Science and Manufacturing, 2019, 127: 105651. doi: 10.1016/j.compositesa.2019.105651
    [35]
    SHEN H, YAO L, LEGRAND X, et al. Characterization of wrinkle morphologies by surface waviness evaluation method during deep forming of multilayer composite preforms[J]. Composite Structures, 2023, 306: 116586. doi: 10.1016/j.compstruct.2022.116586
    [36]
    CHEN S, ENDRUWEIT A, HARPER L T, et al. Inter-ply stitching optimisation of highly drapeable multi-ply preforms[J]. Composites Part A: Applied Science and Manufacturing, 2015, 71: 144-156. doi: 10.1016/j.compositesa.2015.01.016
    [37]
    DUHOVIC M, MITSCHANG P, BHATTACHARYYA D. Modelling approach for the prediction of stitch influence during woven fabric draping[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(8): 968-978. doi: 10.1016/j.compositesa.2011.03.025
    [38]
    HUANG J, BOISSE P, HAMILA N. Simulation of the forming of tufted multilayer composite preforms[J]. Composites Part B: Engineering, 2021, 220: 108981. doi: 10.1016/j.compositesb.2021.108981
    [39]
    ANNO G D. Effect of tufting on the mechanical behavior of carbon fabric/epoxy composites[D]. Cranfield, 2007.
    [40]
    LOMBETTI D M. Tufting of complex composite structures[D]. Cranfield, 2015.
    [41]
    TREIBER J W G. Performance of tufted carbin fibre/epoxy composites[D]. Cranfield, 2011.
    [42]
    王显峰, 高天成, 肖军. 复合材料缝合技术的研究进展[J]. 纺织学报, 2019, 40(12): 169-177.

    WANG Xianfeng, GAO Tiancheng, XIAO Jun. Research progress of stitching technology of composite materials[J]. Journal of Textile Research, 2019, 40(12): 169-177(in Chinese).
    [43]
    董九志, 耿争言, 王立文, 等. 复合材料预制体单边缝合技术研究进展[J]. 航空制造技术, 2022, 65(16): 46-53.

    DONG Jiuzhi, GENG Zhengyan, WANG Liwen, et al. Research progress on one-sided stitching technology for composite preforms[J]. Aeronautical Manufacturing Technology, 2022, 65(16): 46-53(in Chinese).
    [44]
    王立文, 董九志, 陈云军, 等. 碳纤维复合材料单边缝合机构运动轨迹设计[J]. 复合材料科学与工程, 2021, (11): 75-81.

    WANG Liwen, DONG Jiuzhi, CHEN Yunjun, et al. Motive trajectory design of one-sided stitching mechanism for carbon fiber composite[J]. Composites Science and Engineering, 2021, (11): 75-81(in Chinese).
    [45]
    林东, 董九志, 陈云军, 等. 硬质夹层三明治结构复合材料预制体缝合头参数化设计[J]. 复合材料科学与工程, 2021, (6): 94-101.

    LIN Dong, DONG Jiuzhi, CHEN Yunjun, et al. Parametric design of precast suture head of rigid sandwich structural composite[J]. Composites Science and Engineering, 2021, (6): 94-101(in Chinese).
    [46]
    HENAO A, CARRERA M, MIRAVETE A, et al. Mechanical performance of through-thickness tufted sandwich structures[J]. Composite Structures, 2010, 92(9): 2052-2059. doi: 10.1016/j.compstruct.2009.11.005
    [47]
    MARTINS A T, ABOURA Z, HARIZI W, et al. Analysis of the impact and compression after impact behavior of tufted laminated composites[J]. Composite Structures, 2018, 184: 352-361. doi: 10.1016/j.compstruct.2017.09.096
    [48]
    CHEN X, ZHANG Y, XIE J, et al. Robot needle-punching path planning for complex surface preforms[J]. Robotics and Computer-Integrated Manufacturing, 2018, 52: 24-34. doi: 10.1016/j.rcim.2018.02.004
    [49]
    PAPPAS G, JONCAS S, MICHAUD V, et al. The influence of through-thickness reinforcement geometry and pattern on delamination of fiber-reinforced composites: Part I–Experimental results[J]. Composite Structures, 2018, 184: 924-934. doi: 10.1016/j.compstruct.2017.09.091
    [50]
    HENAO A, GUZMÁN DE VILLORIA R, CUARTERO J, et al. Enhanced impact energy absorption characteristics of sandwich composites through tufting[J]. Mechanics of Advanced Materials and Structures, 2015, 22(12): 1016-1023. doi: 10.1080/15376494.2014.918221
    [51]
    VERMA K K, VISWAMURTHY S R, GADDIKERI K M, et al. Tufting thread and density controls the mode-I fracture toughness in carbon/epoxy composite[J]. Composite Structures, 2021, 261: 113272. doi: 10.1016/j.compstruct.2020.113272
    [52]
    HUI C, WANG P, LEGRAND X. Improvement of tufting mechanism during the advanced 3-dimensional tufted composites manufacturing: To the optimisation of tufting threads degradation[J]. Composite Structures, 2019, 220: 423-430. doi: 10.1016/j.compstruct.2019.04.019
    [53]
    LOMBETTI D M, SKORDOS A A. Lightning strike and delamination performance of metal tufted carbon composites[J]. Composite Structures, 2019, 209: 694-699. doi: 10.1016/j.compstruct.2018.11.005
    [54]
    MCGARRIGLE C, FERNÁNDEZ D, MIDDENDORF P, et al. Extruded high-temperature thermoplastic tufting yarns for enhanced mechanical properties of composites[J]. Journal of Reinforced Plastics and Composites, 2020, 39(7-8): 249-259. doi: 10.1177/0731684419886368
    [55]
    MCGARRIGLE C, WEGRZYN M, HAN Y, et al. Influence of extrusion parameters on filled polyphenylsulfone tufting yarns on open-hole tensile strength[J]. Journal of Reinforced Plastics and Composites, 2023, 42(21-22): 1167-1175. doi: 10.1177/07316844221146984
    [56]
    KHOR W, RAVINDRAN A R, LADANI R B, et al. Material-enabled damage inspection of multifunctional shape memory alloy tufted composite T-joints[J]. NDT & E International, 2024, 142: 103002.
    [57]
    KHOR W, RAVINDRAN A R, CIAMPA F, et al. Improving the damage tolerance of composite T-joints using shape memory alloy tufts[J]. Composites Part A: Applied Science and Manufacturing, 2023, 168: 107474. doi: 10.1016/j.compositesa.2023.107474
    [58]
    MALLACH A, HÄRTEL F, HEIECK F, et al. Experimental comparison of a macroscopic draping simulation for dry non-crimp fabric preforming on a complex geometry by means of optical measurement[J]. Journal of Composite Materials, 2017, 51(16): 2363-2375. doi: 10.1177/0021998316670477
    [59]
    ALLAOUI S, HIVET G, SOULAT D, et al. Experimental preforming of highly double curved shapes with a case corner using an interlock reinforcement[J]. International Journal of Material Forming, 2014, 7: 155-165. doi: 10.1007/s12289-012-1116-5
    [60]
    徐艺榕, 孙颖, 韩朝锋, 等. 复合材料用三维机织物成型性的研究进展[J]. 纺织学报, 2014, 35(9): 165-172.

    XU Yirong, SUN Yin, HAN Chaofeng, et al. Research progress of 3D woven fabric formability for composite materials[J]. Journal of Textile Research, 2014, 35(9): 165-172(in Chinese).
    [61]
    JIAO W, CHEN L, XIE J, et al. Deformation mechanisms of 3D LTL woven preforms in hemisphere forming tests[J]. Composite Structures, 2022, 283: 115156. doi: 10.1016/j.compstruct.2021.115156
    [62]
    LABANIEH A R, GARNIER C, OUAGNE P, et al. Intra-ply yarn sliding defect in hemisphere preforming of a woven preform[J]. Composites Part A: Applied Science and Manufacturing, 2018, 107: 432-446. doi: 10.1016/j.compositesa.2018.01.018
    [63]
    LI L, ZHAO Y, LIU G, et al. Draping behavior of carbon non-crimp fabrics and its effects on mechanical performance of the hemispherical composites[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2018, 33: 720-728. doi: 10.1007/s11595-018-1884-y
    [64]
    HUANG J, BOISSE P, HAMILA N, et al. Experimental and numerical analysis of textile composite draping on a square box. Influence of the weave pattern[J]. Composite Structures, 2021, 267: 113844. doi: 10.1016/j.compstruct.2021.113844
    [65]
    WANG P, LEGRAND X, BOISSE P, et al. Experimental and numerical analyses of manufacturing process of a composite square box part: Comparison between textile reinforcement forming and surface 3D weaving[J]. Composites Part B: Engineering, 2015, 78: 26-34. doi: 10.1016/j.compositesb.2015.03.072
    [66]
    ALLAOUI S, BOISSE P, CHATEL S, et al. Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(6): 612-622. doi: 10.1016/j.compositesa.2011.02.001
    [67]
    BARDL G, NOCKE A, HÜBNER M, et al. Analysis of the 3D draping behavior of carbon fiber non-crimp fabrics with eddy current technique[J]. Composites Part B: Engineering, 2018, 132: 49-60. doi: 10.1016/j.compositesb.2017.08.007
    [68]
    DONG L, LEKAKOU C, BADER M G. Solid-mechanics finite element simulations of the draping of fabrics: A sensitivity analysis[J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(7): 639-652. doi: 10.1016/S1359-835X(00)00046-4
    [69]
    HU H, CAO D, CAO Z, et al. Experimental and numerical investigations of wrinkle effect on failure behavior of curved composite laminates[J]. Composite Structures, 2021, 261: 113541. doi: 10.1016/j.compositesb.2014.02.007
    [70]
    孔令国, 王继辉, 陈宏达, 等. 压边力对非平衡平纹机织物预制体成型作用规律[J]. 复合材料学报, 2022, 39(4): 1798-1812.

    KONG Lingguo, WANG Jihui, CHEN Hongda, et al. Influence of blank-holder force on the draping process of unbalanced plain woven fabric preform[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1798-1812(in Chinese).
    [71]
    LEE J S, HONG S J, YU W R, et al. The effect of blank holder force on the stamp forming behavior of non-crimp fabric with a chain stitch[J]. Composites Science and Technology, 2007, 67(3-4): 357-366. doi: 10.1016/j.compscitech.2006.09.009
    [72]
    CAPELLE E, OUAGNE P, SOULAT D, et al. Complex shape forming of flax woven fabrics: Design of specific blank-holder shapes to prevent defects[J]. Composites Part B: Engineering, 2014, 62: 29-36.
    [73]
    DUFOUR C, WANG P, BOUSSU F, et al. Experimental investigation about stamping behaviour of 3D warp interlock composite preforms[J]. Applied Composite Materials, 2014, 21(5): 725-738. doi: 10.1007/s10443-013-9369-9
    [74]
    ALLAOUI S, CELLARD C, HIVET G. Effect of inter-ply sliding on the quality of multilayer interlock dry fabric preforms[J]. Composites Part A: Applied Science and Manufacturing, 2015, 68: 336-345. doi: 10.1016/j.compositesa.2014.10.017
    [75]
    ALLAOUI S, HIVET G, WENDLING A, et al. Influence of the dry woven fabrics meso-structure on fabric/fabric contact behavior[J]. Journal of Composite Materials, 2012, 46(6): 627-639. doi: 10.1177/0021998311424627
    [76]
    GUZMAN-MALDONADO E, WANG P, HAMILA N, et al. Experimental and numerical analysis of wrinkling during forming of multi-layered textile composites[J]. Composite Structures, 2019, 208: 213-223. doi: 10.1016/j.compstruct.2018.10.018
    [77]
    BEL S. Analyse et simulation de la mise en forme des renforts de composites NCF[D]. INSA Lyon, 2011.
    [78]
    BEL S, HAMILA N, BOISSE P, et al. Finite element model for NCF composite reinforcement preforming: Importance of inter-ply sliding[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(12): 2269-2277. doi: 10.1016/j.compositesa.2012.08.005
    [79]
    BOISSE P, HAMILA N, VIDAL-SALLÉ E, et al. Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses[J]. Composites Science and Technology, 2011, 71(5): 683-692. doi: 10.1016/j.compscitech.2011.01.011
    [80]
    MEI M, HUANG J, YU S, et al. Shear deformation characterization and normalized method of tricot-stitched unidirectional non-crimp fabric[J]. Composites Science and Technology, 2024, 246: 110391. doi: 10.1016/j.compscitech.2023.110391
    [81]
    BOISSE P, HAMILA N, GUZMAN-MALDONADO E, et al. The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: a review[J]. International Journal of Material Forming, 2017, 10: 473-492. doi: 10.1007/s12289-016-1294-7
    [82]
    PRODROMOU A G, CHEN J. On the relationship between shear angle and wrinkling of textile composite preforms[J]. Composites Part A: Applied Science and Manufacturing, 1997, 28(5): 491-503. doi: 10.1016/S1359-835X(96)00150-9
    [83]
    BOISSE P, COLMARS J, HAMILA N, et al. Bending and wrinkling of composite fiber preforms and prepregs. A review and new developments in the draping simulations[J]. Composites Part B: Engineering, 2018, 141: 234-249. doi: 10.1016/j.compositesb.2017.12.061
    [84]
    VANCLOOSTER K, LOMOV S V, VERPOEST I. Experimental validation of forming simulations of fabric reinforced polymers using an unsymmetrical mould configuration[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(4): 530-539. doi: 10.1016/j.compositesa.2009.02.005
    [85]
    MOLNAR P, OGALE A, LAHR R, et al. Influence of drapability by using stitching technology to reduce fabric deformation and shear during thermoforming[J]. Composites Science and Technology, 2007, 67(15-16): 3386-3393. doi: 10.1016/j.compscitech.2007.03.022
    [86]
    SHEN H, WANG P, LEGRAND X. In-plane shear characteristics during the forming of tufted carbon woven fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2021, 141: 106196. doi: 10.1016/j.compositesa.2020.106196
    [87]
    GNABA I. Étude du comportement mécanique et de la déformabilité de préformes fibreuses renforcées dans l’épaisseur par piquage[D]. University of Lille, 2019.
    [88]
    WANKHEDE P, SURESH K. A review on the evaluation of formability in sheet metal forming[J]. Advances in Materials and Processing Technologies, 2020, 6(2): 458-485. doi: 10.1080/2374068X.2020.1731229
    [89]
    GEREKE T, DÖBRICH O, HÜBNER M, et al. Experimental and computational composite textile reinforcement forming: A review[J]. Composites Part A: Applied Science and Manufacturing, 2013, 46: 1-10. doi: 10.1016/j.compositesa.2012.10.004
    [90]
    BAI R, CHEN B, COLMARS J, et al. Physics-based evaluation of the drapability of textile composite reinforcements[J]. Composites Part B: Engineering, 2022, 242: 110089. doi: 10.1016/j.compositesb.2022.110089
    [91]
    ARNOLD S E, SUTCLIFFE M P F, ORAM W L A. Experimental measurement of wrinkle formation during draping of non-crimp fabric[J]. Composites Part A: Applied Science and Manufacturing, 2016, 82: 159-169. doi: 10.1016/j.compositesa.2015.12.011
    [92]
    VIISAINEN J V, SUTCLIFFE M P F. Characterising the variability in wrinkling during the preforming of non-crimp fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2021, 149: 106536. doi: 10.1016/j.compositesa.2021.106536
    [93]
    VIISAINEN J V, HOSSEINI A, SUTCLIFFE M P F. Experimental investigation, using 3D digital image correlation, into the effect of component geometry on the wrinkling behaviour and the wrinkling mechanisms of a biaxial NCF during preforming[J]. Composites Part A: Applied Science and Manufacturing, 2021, 142: 106248. doi: 10.1016/j.compositesa.2020.106248
    [94]
    LIANG B, COLMARS J, BOISSE P. A shell formulation for fibrous reinforcement forming simulations[J]. Composites Part A: Applied Science and Manufacturing, 2017, 100: 81-96. doi: 10.1016/j.compositesa.2017.04.024
    [95]
    BAI R, COLMARS J, NAOUAR N, et al. A specific 3D shell approach for textile composite reinforcements under large deformation[J]. Composites Part A: Applied Science and Manufacturing, 2020, 139: 106135. doi: 10.1016/j.compositesa.2020.106135
    [96]
    CHARMETANT A, VIDAL-SALLÉ E, BOISSE P. Hyperelastic modelling for mesoscopic analyses of composite reinforcements[J]. Composites Science and Technology, 2011, 71(14): 1623-1631. doi: 10.1016/j.compscitech.2011.07.004
    [97]
    CHEN B, COLMARS J, BAI R, et al. Kinematic modeling of transverse shear in textile composite reinforcements forming[J]. International Journal of Mechanical Sciences, 2023, 245: 108129. doi: 10.1016/j.ijmecsci.2023.108129
    [98]
    DE LUYCKER E, MORESTIN F, BOISSE P, et al. Simulation of 3D interlock composite preforming[J]. Composite Structures, 2009, 88(4): 615-623. doi: 10.1016/j.compstruct.2008.06.005
    [99]
    XIONG H, HAMILA N, BOISSE P. Consolidation modeling during thermoforming of thermoplastic composite prepregs[J]. Materials, 2019, 12(18): 2853. doi: 10.3390/ma12182853
    [100]
    WANG J, WANG P, HAMILA N, et al. Mesoscopic analyses of the draping of 3D woven composite reinforcements based on macroscopic simulations[J]. Composite Structures, 2020, 250: 112602. doi: 10.1016/j.compstruct.2020.112602
    [101]
    YANG Z, JIAO Y, XIE J, et al. Modeling of 3D woven fibre structures by numerical simulation of the weaving process[J]. Composites Science and Technology, 2021, 206: 108679. doi: 10.1016/j.compscitech.2021.108679
    [102]
    CREECH G, PICKETT A K. Meso-modelling of non-crimp fabric composites for coupled drape and failure analysis[J]. Journal of Materials Science, 2006, 41: 6725-6736. doi: 10.1007/s10853-006-0213-6
    [103]
    ZHENG R, SCHÄFER B, PLATZER A, et al. A unit-cell mesoscale modelling of biaxial non-crimp-fabric based on a hyperelastic approach[C]//26th International ESAFORM Conference on Material Forming. 2023, 28: 285-292.
    [104]
    SCHIRMAIER F J, DÖRR D, HENNING F, et al. A macroscopic approach to simulate the forming behaviour of stitched unidirectional non-crimp fabrics (UD-NCF)[J]. Composites Part A: Applied Science and Manufacturing, 2017, 102: 322-335. doi: 10.1016/j.compositesa.2017.08.009
    [105]
    HUANG J, BOISSE P, HAMILA N, et al. Simulation of wrinkling during bending of composite reinforcement laminates[J]. Materials, 2020, 13(10): 2374. doi: 10.3390/ma13102374
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views (221) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return