CHEN Chunyu, WANG Jianfeng, ZHANG Muzi, et al. Research on the microcrack behavior of carbon fiber/epoxy composites under prestress and ultra-low temperature cycling[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 181-189. DOI: 10.13801/j.cnki.fhclxb.20240716.004
Citation: CHEN Chunyu, WANG Jianfeng, ZHANG Muzi, et al. Research on the microcrack behavior of carbon fiber/epoxy composites under prestress and ultra-low temperature cycling[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 181-189. DOI: 10.13801/j.cnki.fhclxb.20240716.004

Research on the microcrack behavior of carbon fiber/epoxy composites under prestress and ultra-low temperature cycling

Funds: National Natural Science Foundation of China (12372129)
More Information
  • Received Date: February 17, 2024
  • Revised Date: June 16, 2024
  • Accepted Date: July 07, 2024
  • Available Online: July 19, 2024
  • Published Date: July 17, 2024
  • The use of composite materials in low-temperature fuel tanks is an effective approach to achieve weight reduction and enhance carrying capacity for launch vehicle structures. However, as the tank is subjected to both ultra-low temperature cycling and mechanical loads during service, it is prone to internal microcrack formation in composite materials, posing a threat to structural safety. In this study, a simple pre-stressing device was used to conduct ultra-low temperature cycling tests on carbon fiber/epoxy orthotropic laminates. The research focused on the initiation and evolution of microcracks in composite laminates under the combined action of pre-stress and ultra-low temperature cycling. The results indicate that the microcrack density at the edge layers of the laminate is generally higher than that in the inner layers, but the central two 90° stacked layers exhibits the maximum microcrack density. Compared with conditions of only low-temperature cycling, the pre-stress results in a higher microcrack density in the laminate under the same number of low-temperature cycles, with a faster growth rate. With an increase in the number of cycles, the growth rate of microcrack density initially accelerates and then slows down, eventually reaching saturation. As the pre-stress level increases, the initiation and propagation rates of microcracks in the laminate are further intensified. This study provides a preliminary insight into the mechanism of microcrack initiation and evolution in composite materials under the coupled action of load and ultra-low temperature cycling, offering meaningful references for the development and application of low-temperature composite material tanks.

  • [1]
    黄诚, 刘德博, 吴会强, 等. 我国航天运载器复合材料贮箱应用展望[J]. 沈阳航空航天大学学报, 2016, 33(2): 27-35.

    HUANG Cheng, LIU Debo, WU Huiqiang, et al. Application prospects of composite propellant tanks in domestic launch vehicles[J]. Journal of Shenyang Aerospace University, 2016, 33(2): 27-35(in Chinese).
    [2]
    WATANABE S, SHINDO Y, NARIT F, et al. Thermal-mechanical analysis of satin weave CFRP composites with cracks at cryogenic temperatures[J]. Journal of Reinforced Plastics and Composites, 2009, 28(11): 1319-1337. DOI: 10.1177/0731684408089133
    [3]
    GROGAN D M, LEEN S B, BRADAIGH C M Ó. An XFEM-based methodology for fatigue delamination and permeability of composites[J]. Composite Structures, 2014, 107: 205-218. DOI: 10.1016/j.compstruct.2013.07.050
    [4]
    KIM M G, KANG S G, KIM C G, et al. Thermally induced stress analysis of composite/aluminum ring specimens at cryogenic temperature[J]. Composites Science and Technology, 2008, 68(3-4): 1080-1087. DOI: 10.1016/j.compscitech.2007.03.015
    [5]
    MENG J, ZHENG H, WEI Y, et al. Leakage performance of CFRP laminate under cryogenic temperature: Experimental and simulation study[J]. Composites Science and Technology, 2022, 226: 109550. DOI: 10.1016/j.compscitech.2022.109550
    [6]
    FLANAGAN M, GROGAN D M, GOGGINS J, et al. Permeability of carbon fibre PEEK composites for cryogenic storage tanks of future space launchers[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 173-184. DOI: 10.1016/j.compositesa.2017.06.013
    [7]
    HOHE J, SCHOBER M, FLIEGIAN S, et al. Effect of cryogenic environments on failure of carbon fiber reinforced composites[J]. Composites Science and Technology, 2021, 212: 108850. DOI: 10.1016/j.compscitech.2021.108850
    [8]
    YAN M, LIU Y, JIANG W, et al. Mechanism of matrix influencing the cryogenic mechanical property of carbon fibre reinforced epoxy resin composite[J]. Composites Communications, 2022, 33: 101220. DOI: 10.1016/j.coco.2022.101220
    [9]
    LI Y, WEI Y, MENG J, et al. Damage evolution characterization of glass fabric composites at cryogenic temperatures via in-situ tensile X-ray computed tomography tests[J]. Composites Communications, 2022, 35: 101326. DOI: 10.1016/j.coco.2022.101326
    [10]
    GUO F L, ZHOU Z L, WU T, et al. Experimental and multiscale modeling investigations of cryo-thermal cycling effects on the mechanical behaviors of carbon fiber reinforced epoxy composites[J]. Composites Part B: Engineering, 2022, 230: 109534. DOI: 10.1016/j.compositesb.2021.109534
    [11]
    JEAN-ST-LAURENT M, DANO M L, POTVIN M J. Study of damage induced by extreme thermal cycling in cyanate ester laminates and sandwich panels[J]. Journal of Composite Materials, 2017, 51(14): 2023-2034. DOI: 10.1177/0021998316666937
    [12]
    MENG J, WANG Y, YANG H, et al. Mechanical properties and internal microdefects evolution of carbon fiber reinforced polymer composites: Cryogenic temperature and thermocycling effects[J]. Composites Science and Technology, 2020, 191: 108083. DOI: 10.1016/j.compscitech.2020.108083
    [13]
    刘娇文, 高战蛟, 周欣欣, 等. 冷热循环对 M40 碳纤维/氰酸酯复合材料影响的试验研究[J]. 航天器环境工程, 2014, 31(6): 631-634. DOI: 10.3969/j.issn.1673-1379.2014.06.012

    LIU Jiaowen, GAO Zhanjiao, ZHOU Xinxin, et al. Experimental study on the effect of cold and hot cycling on M40 carbon fiber/cyanate composites[J]. Spacecraft Environmental Engineering, 2014, 31(6): 631-634(in Chinese). DOI: 10.3969/j.issn.1673-1379.2014.06.012
    [14]
    BECHEL V T, CAMPING J D, KIM R Y. Cryogenic/elevated temperature cycling induced leakage paths in PMCs[J]. Composites Part B: Engineering, 2005, 36(2): 171-182. DOI: 10.1016/j.compositesb.2004.03.001
    [15]
    CHOI S, SANKAR B V. Gas permeability of various graphite/epoxy composite laminates for cryogenic storage systems[J]. Composites Part B: Engineering, 2008, 39(5): 782-791. DOI: 10.1016/j.compositesb.2007.10.010
    [16]
    石建军, 任银银, 贾彬, 等. 高低温循环-湿度-荷载耦合作用对碳纤维/环氧树脂复合材料拉伸性能的影响[J]. 航空材料学报, 2022, 42(6): 97-106. DOI: 10.11868/j.issn.1005-5053.2021.000193

    SHI Jianjun, REN Yinyin, JIA Bin, et al. Effect of high and low temperature cycle-humidity-load coupling on tensile properties of carbon fiber/epoxy resin composites[J]. Journal of Aeronautical Materials, 2022, 42(6): 97-106(in Chinese). DOI: 10.11868/j.issn.1005-5053.2021.000193
    [17]
    YOKOZEKI T, OGASAWARA T, ISHIKAWA T. Evaluation of gas leakage through composite laminates with multilayer matrix cracks: Cracking angle effects[J]. Composites Science and Technology, 2006, 66(15): 2815-2824. DOI: 10.1016/j.compscitech.2006.02.024
    [18]
    HAMORI H, KUMAZAWA H, HIGUCHI R, et al. Gas permeability of CFRP cross-ply laminates with thin-ply barrier layers under cryogenic and biaxial loading conditions[J]. Composite Structures, 2020, 245: 112326. DOI: 10.1016/j.compstruct.2020.112326
    [19]
    黄诚. 航天运载器低温复合材料贮箱结构设计方法研究[D]. 长沙: 国防科技大学, 2017.

    HUANG Cheng. Structural design of cryogenic composite tank for space vehicle[D]. Changsha: National University of Defense Technology, 2017(in Chinese).
    [20]
    李存静, 陶洋, 逄增媛, 等. 2.5D机织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料高温力学行为及损伤机制[J]. 复合材料学报, 2024, 41(1): 144-153.

    LI Cunjing, TAO Yang, PANG Zengyuan, et al. High temperature mechanical behavior and damage mechanism of 2.5D woven carbon fiber-glass fiber/bismaleimide resin composite[J]. Acta Material Compositae Sinica, 2024, 41(1): 144-153(in Chinese).
    [21]
    CHENG B Q, HONG M X, GUI W H, et al. Effects of cryo-thermal cycling on interlaminar shear strength and thermal expansion coefficient of carbon fiber/graphene oxide-modified epoxy composites[J]. Composites Communications, 2022, 32: 101180. DOI: 10.1016/j.coco.2022.101180
    [22]
    GUPTA S K, HOJJATI M. Thermal cycle effects on laminated composite plates containing voids[J]. Journal of Composite Materials, 2019, 53(4): 489-501. DOI: 10.1177/0021998318786785
    [23]
    GROGAN D M, LEEN S B, SEMPRIMOSCC O A, et al. Damage characterisation of cryogenically cycled carbon fibre/PEEK laminates[J]. Composites Part A: Applied Science and Manufacturing, 2014, 66: 237-250. DOI: 10.1016/j.compositesa.2014.08.007
    [24]
    YANG L, LI Z, XU H, et al. Prediction on residual stresses of carbon/epoxy composite at cryogenic temperature[J]. Polymer Composites, 2019, 40(9): 3412-3420. DOI: 10.1002/pc.25202
    [25]
    PATNAIK S, GANGINENI P K, PRUSTY R K. Influence of cryogenic temperature on mechanical behavior of graphene carboxyl grafted carbon fiber reinforced polymer composites: An emphasis on concentration of nanofillers[J]. Composites Communications, 2020, 20: 100369. DOI: 10.1016/j.coco.2020.100369
  • Related Articles

    [1]SU Weiguo, ZHANG Xianbiao, WEI Kun, SU Zhenzhong, WANG Dong. Pre-stress dynamic performance during filament winding with tension[J]. Acta Materiae Compositae Sinica, 2019, 36(5): 1143-1150. DOI: 10.13801/j.cnki.fhclxb.20180821.003
    [2]GU Zhixu, ZHENG Jian, PENG Wei, ZHI Jianzhuang. A viscoelastic constitutive model of solid composite propellants with micro-cracking damage[J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1203-1210. DOI: 10.13801/j.cnki.fhclxb.20170829.001
    [3]WANG Lingling, FANG Guodong, LIANG Jun. High temperature tensile damage behavior of ZrB2-based ultra-high temperature ceramic composites[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 125-130. DOI: 10.13801/j.cnki.fbclxb.201501.002
    [4]XIAO Jianqiang, ZHANG Qing, XIA Xiaozhou. Strength criterion of the composite with a set of parallel penny-shaped cracks[J]. Acta Materiae Compositae Sinica, 2013, 30(2): 226-232.
    [5]SHI Shou-xia, YANG Qing-shan, LIU Dian-kui, QI Hui. DYNAMIC STRESS CONCENTRATION AND SCATTERING OF SH-WAVE BY CIRCLE INTERMIXION AND CRACK[J]. Acta Materiae Compositae Sinica, 2000, 17(3): 107-112.
    [6]Liang Jun, Du Shan-yi, Chen Xiao-feng. THERMAL EXPANSION COEFFICIENTS OF THREEDIMENSIONALBRAIDED COMPOSITES WITH PENNYSHAPED MICROCRACKS[J]. Acta Materiae Compositae Sinica, 1998, 15(3): 103-107.
    [7]Liang Jun, Du Shanyi, Han Jiecai. EFFECTIVE ELASTIC PROPERTIES OF THREE-DIMENSIONAL BRAIDED COMPOSITES WITH MATRIX MICROCRACKS[J]. Acta Materiae Compositae Sinica, 1997, 14(1): 101-107.
    [8]Cai Siwei, Cai Min, Wang Hui, Xu Xilin, Cai Jian. MECHANICS OF CRACK ARREST IN SHORT FIBER REINFORCED COMPOSITES[J]. Acta Materiae Compositae Sinica, 1995, 12(3): 101-107.
    [9]Li Wenfang, Meng Jilong, Wei Xingzhao. INFLUENCE OF RESIDUAL THERMO-STRAIN AND MICROCRACKS ON THE BEHAVIOUR OF WHISKER TOUGHENING CERAMIC MATRIX COMPOSITE MATERIALS[J]. Acta Materiae Compositae Sinica, 1995, 12(2): 77-82.
    [10]Sui Guoxin, Yao Ge, Fu Shaoyun, Zhou Benlian, Zhou Chengti. INFLUENCE OF FIBER PRE-STRESSING ON THE TENSILE PROPERTIESOF VIRALL[J]. Acta Materiae Compositae Sinica, 1995, 12(2): 42-46.
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (204) PDF downloads (27) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return