Volume 39 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
LIU Lili, ZHOU Xiaojing, XIN Chunling, et al. ZIF-67 supported Pd nanoparticles and Pd–Cu nanoparticles for selective hydrogenation of 1,3-butadiene[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3376-3387. doi: 10.13801/j.cnki.fhclxb.20210916.005
Citation: LIU Lili, ZHOU Xiaojing, XIN Chunling, et al. ZIF-67 supported Pd nanoparticles and Pd–Cu nanoparticles for selective hydrogenation of 1,3-butadiene[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3376-3387. doi: 10.13801/j.cnki.fhclxb.20210916.005

ZIF-67 supported Pd nanoparticles and Pd–Cu nanoparticles for selective hydrogenation of 1,3-butadiene

doi: 10.13801/j.cnki.fhclxb.20210916.005
  • Received Date: 2021-07-07
  • Accepted Date: 2021-08-27
  • Rev Recd Date: 2021-08-12
  • Available Online: 2021-09-16
  • Publish Date: 2022-07-30
  • Selective hydrogenation of 1,3-butadiene is an effective strategy to remove 1,3-butadiene in the petrochemical industry. ZIF-67 supported monometallic Pd (Pd/ZIF-67) and bimetallic Pd–Cu catalysts (PdCu/ZIF-67) with different Pd:Cu molar ratios (1∶3–3∶1) were synthesized by impregnation and hydrogen reduction. The prepared Pd/ZIF-67 and PdCu/ZIF-67 catalysts were characterized using XRD, N2 adsorption-desorption analysis, TEM, EDS, XPS and ICP-AES. The catalytic performance of supported Pd/ZIF-67 and PdCu/ZIF-67 catalysts were studied in the selective hydrogenation of 1,3-butadiene on the fixed-bed flow quartz reactor under atmospheric pressure. The XPS studies at Pd3d levels and Cu2p levels reveal that Pd and Cu particles on the surface of the ZIF-67 support are in a +2 valence state. TEM and EDS display that Pd nanoparticles and Pd–Cu nanoparticles are uniformly dispersed on ZIF-67. The experiment results show that the catalytic activity of PdCu/ZIF-67(1∶1) is lower than that of Pd/ZIF-67 due to strong interaction between Pd–Cu and ZIF-67 support and the geometric effects, i.e., dilution of blocking of a fraction of the palladium surface by copper. The 1,3-butadiene conversion and butene selectivity reach 99.9% and 79.6% for Pd/ZIF-67 at 50℃, respectively. For the PdCu/ZIF-67(1∶1) catalyst, the 1,3-butadiene conversion and butene selectivity are 93.2% and 64.3% at 130℃ within 7 h, respectively. The hydrogenation activity of PdCu/ZIF-67 catalyst decrease with increasing of Cu content, while the butene selectivity increase. PdCu/ZIF-67(1∶1) show higher stability than Pd/ZIF-67, the conversion of 1,3-butadiene and butene selectivity almost remain the same after continuous run for 50 h at 130℃. The results provide a reference for the design of new high efficiency 1,3-butadiene hydrogenation catalyst.

     

  • loading
  • [1]
    LIU L, ZHOU X, GUO L, et al. Bimetallic Au–Pd alloy nanoparticles supported on MIL-101(Cr) as highly efficient catalysts for selective hydrogenation of 1,3-butadiene[J]. RSC Advances,2020,10(55):33417-33427. doi: 10.1039/D0RA06432G
    [2]
    YI H, XIA Y, YAN H, et al. Coating Pd/Al2O3 catalysts with FeOx enhances both activity and selectivity in 1,3-butadiene hydrogenation[J]. Chinese Journal of Catalysis,2017,38(9):1581-1587. doi: 10.1016/S1872-2067(17)62768-2
    [3]
    LIU L, TAI X, ZHOU X, et al. Au-Pt bimetallic nanoparticle catalysts supported on UiO-67 for selective 1,3-butadiene hydrogenation[J]. Journal of the Taiwan Institute of Chemical Engineers,2020,114:220-227. doi: 10.1016/j.jtice.2020.09.025
    [4]
    GUO Y, YANG J, ZHUANG J, et al. Selectively catalytic hydrogenation of styrene-butadiene rubber over Pd/g-C3N4 catalyst[J]. Applied Catalysis A: General,2020,589:117312-117320. doi: 10.1016/j.apcata.2019.117312
    [5]
    ZHANG Z C, ZHANG X, YU Q Y, et al. Pd cluster nanowires as highly efficient catalysts for selective hydrogenation reactions[J]. Chemistry-A European Journal,2012,18(9):2639-2645. doi: 10.1002/chem.201102903
    [6]
    DECAROLIS D, LEZCANO-GONZALEZ I, GIANOLIO D, et al. Effect of particle size and support type on Pd catalysts for 1,3-butadiene hydrogenation[J]. Topics in Catalysis,2018,61:162-174. doi: 10.1007/s11244-018-0887-4
    [7]
    LU F, SUN D, JIANG X. Plant-mediated synthesis of AgPd/c-Al2O3 catalysts for selective hydrogenation of 1,3-butadiene at low temperature[J]. New Journal of Chemistry,2019,43(35):13891-13897. doi: 10.1039/C9NJ01733J
    [8]
    YI H, DU H, HU Y, et al. Precisely controlled porous alumina overcoating on Pd catalyst by atomic layer deposition: Enhanced selectivity and durability in hydrogenation of 1,3-butadiene[J]. ACS Catalysis,2015,5(5):2735-2739. doi: 10.1021/acscatal.5b00129
    [9]
    YAN H, CHENG H, YI H, et al. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1,3-butadiene[J]. Journal of the American Chemical Society,2015,137(33):10484-10487. doi: 10.1021/jacs.5b06485
    [10]
    HOU R, YU W, POROSOFF M D, et al. Selective hydrogenation of 1,3-butadiene on Pd–Ni bimetallic catalyst: From model surfaces to supported catalysts[J]. Journal of Catalysis,2014,316:1-10. doi: 10.1016/j.jcat.2014.04.015
    [11]
    PATTAMAKOMSAN K, EHRET E, MORFIN F, et al. Selective hydrogenation of 1,3-butadiene over Pd and Pd–Sn catalysts supported on different phases of alumina[J]. Catalysis Today,2011,164(1):28-33. doi: 10.1016/j.cattod.2010.10.013
    [12]
    LIU L, ZHOU X, LIU L, et al. Heterogeneous bimetallic Cu–Ni nanoparticle-supported catalysts in the selective oxidation of benzyl alcohol to benzaldehyde[J]. Catalysts,2019,9(6):538-555. doi: 10.3390/catal9060538
    [13]
    KIM T W, KIM M, KIM S K K, et al. Remarkably fast low-temperature hydrogen storage into aromatic benzyltoluenes over MgO-supported Ru nanoparticles with homolytic and heterolytic H2 adsorption[J]. Applied Catalysis B: Environmental,2021,286:119889-119901. doi: 10.1016/j.apcatb.2021.119889
    [14]
    HUANG J, ODOOM-WUBAH T, JING X, et al. Plant-mediated synthesis of zinc oxide supported nickel-palladium alloy catalyst for the selective hydrogenation of 1,3-butadiene[J]. ChemCatChem,2017,9(5):870-881. doi: 10.1002/cctc.201601178
    [15]
    叶晓栋, 齐国栋, 徐君, 等. Au负载SBA-15分子筛上葡萄糖氧化反应[J]. 高等学校化学学报, 2020, 41(5):960-966. doi: 10.7503/cjcu20200070

    YE Xiaodong, QI Guodong, XU Jun, et al. Glucose oxidation on Au-supported SBA-15 molecular sieve[J]. Chemical Journal Of Chinese Universities,2020,41(5):960-966(in Chinese). doi: 10.7503/cjcu20200070
    [16]
    孙思齐, 王影, 孙传胤, 等. 碗状双亲型 ZSM-5分子筛负载金纳米粒子的制备及催化性能[J]. 高等学校化学学报, 2019, 40(12):2436-2442. doi: 10.7503/cjcu20190415

    SUN Siqi, WANG Ying, SUN Chuanyin, et al. Preparation and catalytic bowl-shaped amphiphilic ZSM-5 zeolites supported gold nanoparticles[J]. Chemical Journal of Chinese Universities,2019,40(12):2436-2442(in Chinese). doi: 10.7503/cjcu20190415
    [17]
    DENG P, HONG W, CHENG Z, et al. Facile fabrication of nickel/porous g-C3N4 by using carbon dot as template for enhanced photocatalytic hydrogen production[J]. International Journal of Hydrogen Energy,2020,45(58):33543-33551. doi: 10.1016/j.ijhydene.2020.09.115
    [18]
    SALAMA R S, MANNAA M A, ALTASS H M, et al. Palladium supported on mixed-metal–organic framework (Co–Mn-MOF-74) for efficient catalytic oxidation of CO[J]. RSC Advances,2021,11(8):4318-4326. doi: 10.1039/D0RA09970H
    [19]
    RAPTOPOULOU C P. Metal-organic frameworks: Synthetic methods and potential applications[J]. Materials,2021,14(2):310-341. doi: 10.3390/ma14020310
    [20]
    TO T, TRAN C B, NGUYEN N T H, et al. An efficient access to β-ketosulfones via β-sulfonylvinylamines: Metal-organic framework catalysis for the direct C—S coupling of sodium sulfinates with oxime acetates[J]. RSC Advances,2018,8(31):17477-17485. doi: 10.1039/C8RA02389A
    [21]
    NOORI Y, AKHBARI K. Post-synthetic ion-exchange process in nanoporous metal-organic frameworks: An effective way for modulating their structures and properties[J]. RSC Advances,2017,7(4):1782-1808. doi: 10.1039/C6RA24958B
    [22]
    LIU L, TAI X, ZHOU X, et al. Bimetallic Au-Ni alloy nanoparticles in a metal-organic framework (MIL-101) as efficient heterogeneous catalysts for selective oxidation of benzyl alcohol into benzaldehyde[J]. Journal of Alloys Compounds,2019,790:326-336. doi: 10.1016/j.jallcom.2019.03.186
    [23]
    LIU L, ZHOU X, YAN Y, et al. Bimetallic gold-silver nanoparticles supported on zeolitic imidazolate framework-8 as highly active heterogeneous catalysts for selective oxidation of benzyl alcohol into benzaldehyde[J]. Polymers,2018,10(10):1089-1104. doi: 10.3390/polym10101089
    [24]
    GUO Z, XIAO C, MALIGAL-GANESH R V. Pt nanoclusters confined within metal-organic framework cavities for chemoselective cinnamaldehyde hydrogenation[J]. ACS Catalysis,2014,4(5):1340-1348. doi: 10.1021/cs400982n
    [25]
    LI X, GUO Z, XIAO C, et al. Tandem catalysis by palladium nanoclusters encapsulated in metal-organic frameworks[J]. ACS Catalysis,2014,4(10):3490-3497. doi: 10.1021/cs5006635
    [26]
    YOSHIMARU S, SADAKIYO M, MAEDA N, et al. Support effffect of metal-organic frameworks on ethanol production through acetic acid hydrogenation[J]. ACS Applied Materials & Interfaces,2021,13(17):19992-20001.
    [27]
    LIU H, CHANG L, CHEN L, et al. Nanocomposites of platinum/metal-organic frameworks coated with metal-organic frameworks with remarkably enhanced chemoselectivity for cinnamaldehyde hydrogenation[J]. ChemCatChem,2016,8(5):946-951. doi: 10.1002/cctc.201501256
    [28]
    HU W, YUAN K, SONG T, et al. Highly effective and selective catalysts for cinnamaldehyde hydrogenation by hydrophobic hybrids of metal-organic frameworks, metal nanoparticles and micro- & mesoporous polymers[J]. Angewandte Chemie,2018,57(20):5708-5713. doi: 10.1002/anie.201801289
    [29]
    CHEN J, LIU R, GUO Y, et al. Selective hydrogenation of biomass-based 5-hydroxymethylfurfural over catalyst of palladium immobilized on amine-functionalized metal-organic frameworks[J]. ACS Catalysis,2015,5(2):722-733. doi: 10.1021/cs5012926
    [30]
    ZHANG W, SHI W, JI W, et al. Microenvironment of MOF channel coordination with Pt NPs for selective hydrogenation of unsaturated aldehydes[J]. ACS Catalysis,2020,10(10):5805-5813. doi: 10.1021/acscatal.0c00682
    [31]
    ERTAS I E, GULCAN M, BULUT A, et al. Metal-organic framework (MIL-101) stabilized ruthenium nanoparticles: Highly effificient catalytic material in the phenol hydrogenation[J]. Microporous and Mesoporous Materials,2016,226:94-103. doi: 10.1016/j.micromeso.2015.12.048
    [32]
    FENG J, LI M, ZHONG Y, et al. Hydrogenation of levulinic acid to γ-valerolactone over Pd@UiO-66-NH2 with high metal dispersion and excellent reusability[J]. Microporous and Mesoporous Materials,2019,294:109858-109866.
    [33]
    LUO S, ZENG Z, ZENG G, et al. Metal organic frameworks as robust host of Pd nanoparticles in heterogeneous catalysis: Synthesis, application, and prospect[J]. ACS Applied Materials & Interfaces,2019,11(36):32579-32598.
    [34]
    OTTO T, JARENWATTANANON N N, GLOGGLER S, et al. Effects of multivariate linker substitution, metal binding, and reactor conditions on the catalytic activity of a Pd-functionalized MOF for olefin hydrogenation[J]. Applied Catalysis A: General,2014,488:248-255. doi: 10.1016/j.apcata.2014.10.012
    [35]
    LI X L, GOH T W, LI L, et al. Controlling catalytic properties of Pd nanoclusters through their chemical environment at the atomic level using isoreticular metal-organic frameworks[J]. ACS Catalysis,2016,6(6):3461-3468. doi: 10.1021/acscatal.6b00397
    [36]
    JIANG Y, ZHANG X, DAI X P, et al. In situ synthesis of core-shell Pt-Cu frame@metal-organic frameworks as multifunctional catalysts for hydrogenation reaction[J]. Chemistry of Materials,2017,29(15):6336-6345. doi: 10.1021/acs.chemmater.7b01636
    [37]
    JIANG Y, LIU G, WU S, et al. Enhanced performance of well-dispersed Co species incorporated on porous carbon derived from metal-organic frameworks in 1,3-butadiene hydrogenation[J]. Microporous and Mesoporous Materials,2019,288:109557-109565. doi: 10.1016/j.micromeso.2019.06.019
    [38]
    WEN H, ZHANG S, YU T, et al. ZIF-67-based catalysts for oxygen evolution reaction[J]. Nanoscale,2021,13(28):12058-12087. doi: 10.1039/D1NR01669E
    [39]
    BIBI S, PERVAIZ E, ALI M. Synthesis and applications of metal oxide derivatives of ZIF-67: A mini-review[J]. Chemical Papers,2021,75:2253-2275. doi: 10.1007/s11696-020-01473-y
    [40]
    CHU C, RAO S, MA Z, et al. Copper and cobalt nanoparticles doped nitrogen-containing carbon frameworks derived from CuO-encapsulated ZIF-67 as high-efficiency catalyst for hydrogenation of 4-nitrophenol[J]. Applied Catalysis B: Environmental,2019,256:117792-117800. doi: 10.1016/j.apcatb.2019.117792
    [41]
    BUDI C S, DEKA J R, HSU W C, et al. Bimetallic Co/Zn zeolitic imidazolate framework ZIF-67 supported Cu nanoparticles: An excellent catalyst for reduction of synthetic dyes and nitroarenes[J]. Journal of Hazardous Materials,2021,407:124392-124405. doi: 10.1016/j.jhazmat.2020.124392
    [42]
    魏磊, 刘洪燕, 王东升, 等. ZIF-67及其母液衍生Co3O4催化氨硼烷水解制氢[J]. 硅酸盐学报, 2020, 48(3):455-462.

    WEI Lei, LIU Hongyan, WANG Dongsheng, et al. ZIF-67 and its mother liquor derived Co3O4 as catalyst precursors for hydrolysis of ammonia borane to generate hydrogen[J]. Journal of the Chinese Ceramic Society,2020,48(3):455-462(in Chinese).
    [43]
    KIM D, KIM D, JEON Y, et al. Zeolitic imidazolate frameworks derived novel polyhedral shaped hollow Co-B-O@Co3O4 electrocatalyst for oxygen evolution reaction[J]. Electrochimica Acta,2019,299:213-221. doi: 10.1016/j.electacta.2019.01.005
    [44]
    ZHAO J J, QUAN X, CHEN S, et al. Cobalt nanoparticles encapsulated in porous carbons derived from core-shell ZIF67@ZIF8 as efficient electrocatalysts for oxygen evolution reaction[J]. ACS Applied Materials & Interfaces,2017,9(34):28685-28694.
    [45]
    AMARANTE S F, FREIRE M A, MENDES D T S L, et al. Evaluation of basic sites of ZIFs metal organic frameworks in the knoevenagel condensation reaction[J]. Applied Catalysis A: General,2017,548:47-51. doi: 10.1016/j.apcata.2017.08.006
    [46]
    任勇, 袁涛, 刘德蓉, 等. Pd-Cu/Fe3O4@C催化1,4-丁炔二醇选择性加氢的研究[J]. 化学研究与应用, 2017, 29(11):1686-1692. doi: 10.3969/j.issn.1004-1656.2017.11.012

    REN Yong, YUAN Tao, LIU Derong, et al. Study on selective hydrogenation of 1,4-butynediol by Pd-Cu/Fe3O4@C catalyst[J]. Chemical Research and Application,2017,29(11):1686-1692(in Chinese). doi: 10.3969/j.issn.1004-1656.2017.11.012
    [47]
    林欣燕, 马静静, 周雪梅. 高效催化Suzuki偶联反应的催化剂–石墨烯负载纳米Pd-Cu合金纳米复合材料[J]. 合成化学研究, 2013, 1(2):5-9. doi: 10.12677/SSC.2013.12002

    LIN Xinyan, MA Jingjing, ZHOU Xuemei. A highly active catalyst for Suzuki cross-coupling reactions Pd-Cu bimetallic nanoparticles supported on graphene nanocomposites[J]. Studies in Synthetic Chemistry,2013,1(2):5-9(in Chinese). doi: 10.12677/SSC.2013.12002
    [48]
    MUKHERJEE A, SU W N, PAN C J, et al. One pot synthesis of Pd@CuO core-shell nanoparticles for electro catalytic oxidation of ethylene glycol for alkaline direct fuel cell[J]. Journal of Electroanalytical Chemistry,2021,882:115006-115014. doi: 10.1016/j.jelechem.2021.115006
    [49]
    ZHANG X, GUO Y C, ZHANG Z C, et al. High performance of carbon nanotubes confining gold nanoparticles for selective hydrogenation of 1,3-butadiene and cinnamaldehyde[J]. Journal of Catalysis,2012,292:213-226. doi: 10.1016/j.jcat.2012.05.017
    [50]
    NAGY G, GÁL T, SRANKÓ D F, et al. Selective aerobic oxidation of benzyl alcohol on alumina supported Au-Ru and Au-Ir catalysts[J]. Molecular Catalysis,2020,492:110917-110930. doi: 10.1016/j.mcat.2020.110917
    [51]
    PEREIRA M M, NORONHA F B, SCHMAL M. SMSI effect in the butadiene hydrogenation bimetallic catalysts[J]. Catalysis Today,1993,16(3-4):407-415. doi: 10.1016/0920-5861(93)80080-K
    [52]
    KANG M, SONG M W, KIM K L. SMSI effect on ceria supported Cu-Pd catalysts in the hydrogenation of 1,3-butadiene[J]. Reaction Kinetics & Catalysis Letters,2002,75(1):177-183.
    [53]
    COOPER A, BACHILLER-BAEZA B, ANDERSON J A, et al. Design of surface sites for the selective hydrogenation of 1,3-butadiene on Pd nanoparticles: Cu bimetallic formation and sulfur poisoning[J]. Catalysis Science & Technology,2014,4(5):1446-1455.
    [54]
    BACHILLER-BAEZA B, IGLESIAS-JUEZ A, AGOSTINI G, et al. Pd–Au bimetallic catalysts supported on ZnO for selective 1,3-butadiene hydrogenation[J]. Catalysis Science & Technology,2020,10:2503-2512.
    [55]
    LU F, XU Y, JIANG X, et al. Biosynthesized Pd/g-Al2O3 catalysts for low-temperature 1,3-butadiene hydrogenation: The effect of calcination atmosphere[J]. New Journal of Chemistry,2017,41(21):13036-13042. doi: 10.1039/C7NJ02557B
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (1215) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return