Volume 39 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
CHEN Long, ZHANG Kun, ZHENG Lian'gang, et al. Compression properties of three-dimensional woven double spacer composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3703-3711. doi: 10.13801/j.cnki.fhclxb.20210913.004
Citation: CHEN Long, ZHANG Kun, ZHENG Lian'gang, et al. Compression properties of three-dimensional woven double spacer composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3703-3711. doi: 10.13801/j.cnki.fhclxb.20210913.004

Compression properties of three-dimensional woven double spacer composites

doi: 10.13801/j.cnki.fhclxb.20210913.004
  • Received Date: 2021-07-23
  • Accepted Date: 2021-09-03
  • Rev Recd Date: 2021-08-22
  • Available Online: 2021-09-14
  • Publish Date: 2022-08-31
  • In order to enhance the compression strength of three-dimensional woven spacer composites and improve its compression energy absorption, inspired by the design concept of multi-layer sandwich structure, three-dimensional woven double spacer composites with pile height of (6+6) mm and (4+8) mm were designed and fabricated. The flatwise compression and edgewise compression properties and failure modes of the double spacer composites were investigated by comparing with the single spacer composites with the pile height of 12 mm. The results show that the flatwise compressive strength, edgewise compression strength and energy absorption of the two double spacer composites are improved significantly compared with that of single spacer composites. Among them, the flatwise compression strength (11.5 MPa) and specific energy absorption value (6983.7 J/kg) of the double spacer composites with pile height of (6+6) mm are increased by 57.5% and 152.4%, respectively. In addition, the flatwise compression failure mode of the double spacer composites is the fractures of the pile yarns layer by layer, and the edgewise compression failure mode is crack propagation of panel, which show greater energy absorption characteristic. The design of double spacer structure not only enhances the flatwise compression and edgewise compression properties of three-dimensional woven spacer composites, but also optimizes its failure modes, which improves the safety of spacer composites in practical application, and provides a new idea for the structural design of spacer composites with higher pile height or multilayer.

     

  • loading
  • [1]
    MIHAILOVIC T V, ASANOVIC K A, CEROVIC D D. Structural design of face fabrics and the core as a premise for compression behavior of 3D woven sandwich fabric[J]. Journal of Sandwich Structures & Materials,2016,20(6):718-734.
    [2]
    VAN VUURE A W, IVENS J A, VERPOEST I. Mechanical properties of composite panels based on woven sandwich-fabric preforms[J]. Composites Part A: Applied Science and Manufacturing,2000,31(7):671-680. doi: 10.1016/S1359-835X(00)00017-8
    [3]
    WANG L Y, LIU X H, SALEEMI S, et al. Bending properties and failure mechanisms of three-dimensional hybrid woven spacer composites with glass and carbon fibers[J]. Textile Research Journal,2019,89(21-22):4502-4511. doi: 10.1177/0040517519837730
    [4]
    ZHANG M, WANG X, LIU S, et al. Effects of face sheet structure on mechanical properties of 3D integrated woven spacer composites[J]. Fibers and Polymers,2020,21(7):1594-1604. doi: 10.1007/s12221-020-9908-6
    [5]
    XU F J, ZHANG K, QIU Y P. Light-weight, high-gain three-dimensional textile structural composite antenna[J]. Composites Part B: Engineering, 2020, 185: 107781.
    [6]
    GEERINCK R, DE BAERE I, DE CLERCQ G, et al. One-shot production of large-scale 3D woven fabrics with integrated prismatic shaped cavities and their applications[J]. Mater-ials & Design, 2019, 165: 107578.
    [7]
    WANG L Y, ZHANG K, FARHA F I, et al. Compressive strength and thermal insulation properties of the 3D woven spacer composites with connected spacer yarn structure[J]. Journal of Materials Science,2020,55(6):2380-2388. doi: 10.1007/s10853-019-04197-x
    [8]
    张艳红, 耿杰, 匡宁, 等. 三维中空复合材料在天线罩上的应用研究[J]. 玻璃纤维, 2015(3):20-23. doi: 10.3969/j.issn.1005-6262.2015.03.005

    ZHANG Yanhong, GENG Jie, KUANG Ning, et al. Application of 3D hollow sandwich composite in radome[J]. Fiber Glass,2015(3):20-23(in Chinese). doi: 10.3969/j.issn.1005-6262.2015.03.005
    [9]
    LI M, WANG S K, ZHANG Z G, et al. Effect of structure on the mechanical behaviors of three-dimensional spacer fabric composites[J]. Applied Composite Materials,2009,16(1):1-14. doi: 10.1007/s10443-008-9072-4
    [10]
    MIRDEHGHAN A, NOSRATY H, SHOKRIEH M M, et al. Micromechanical modelling of the compression strength of three-dimensional integrated woven sandwich composites[J]. Journal of Industrial Textiles,2018,48(9):1399-1419.
    [11]
    FAN H L, ZHAO L, CHEN H L, et al. Dynamic compression failure mechanisms and dynamic effects of integrated woven sandwich composites[J]. Journal of Composite Materials,2014,48(4):427-438. doi: 10.1177/0021998312473859
    [12]
    高爱君, 李敏, 王绍凯, 等. 三维间隔连体织物复合材料力学性能[J]. 复合材料学报, 2008, 25(2):87-93. doi: 10.3321/j.issn:1000-3851.2008.02.016

    GAO Aijun, LI Min, WANG Shaokai, et al. Experimental study on the mechanical characteristics of 3D spacer fabric composites[J]. Acta Materiae Compositae Sinica,2008,25(2):87-93(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.02.016
    [13]
    周光明, 薄晓莉, 匡宁. 整体中空夹层复合材料的弹性性能分析[J]. 复合材料学报, 2010, 27(1):185-189.

    ZHOU Guangming, BO Xiaoli, KUANG Ning. Analysis of elastic property for hollow integrated sandwich compo-sites[J]. Acta Materiae Compositae Sinica,2010,27(1):185-189(in Chinese).
    [14]
    UMAIR M, HAMDANI S T A, NAWAB Y, et al. Effect of pile height on the mechanical properties of 3D woven spacer composites[J]. Fibers and Polymers,2019,20(6):1258-1265. doi: 10.1007/s12221-019-8761-y
    [15]
    SADIGHI M, HOSSEINI S A. Finite element simulation and experimental study on mechanical behavior of 3D woven glass fiber composite sandwich panels[J]. Composites Part B: Engineering,2013,55:158-166. doi: 10.1016/j.compositesb.2013.06.030
    [16]
    ZHAO C Q, LI D S, GE T Q, et al. Experimental study on the compression properties and failure mechanism of 3D integrated woven spacer composites[J]. Materials & Design,2014,56:50-59.
    [17]
    FAN H L, ZHOU Q, YANG W, et al. An experiment study on the failure mechanisms of woven textile sandwich panels under quasi-static loading[J]. Composites Part B: En-gineering,2010,41(8):686-692. doi: 10.1016/j.compositesb.2010.07.004
    [18]
    REN C X, HU Z F, YAO C, et al. Experimental study on the quasi-static compression behavior of multilayer aluminum foam sandwich structure[J]. Journal of Alloys and Compounds, 2019, 810: 151860.
    [19]
    XIE S, WANG H, YANG C, et al. Mechanical properties of combined structures of stacked multilayer Nomex® honeycombs[J]. Thin-Walled Structures, 2020, 151: 106729.
    [20]
    WANG Z G, LIU J F, LU Z J, et al. Mechanical behavior of composited structure filled with tandem honeycombs[J]. Composites Part B: Engineering,2017,114:128-138. doi: 10.1016/j.compositesb.2017.01.018
    [21]
    XIONG J, VAZIRI A, MA L, et al. Compression and impact testing of two-layer composite pyramidal-core sandwich panels[J]. Composite Structures,2012,94(2):793-801. doi: 10.1016/j.compstruct.2011.09.018
    [22]
    WANG Z W, E Y P. Energy absorption properties of multi-layered corrugated paperboard in various ambient humidities[J]. Materials & Design,2011,32(6):3476-3485.
    [23]
    FAN H, YANG W, ZHOU Q. Experimental research of compressive responses of multi-layered woven textile sandwich panels under quasi-static loading[J]. Composites Part B: Engineering,2011,42(5):1151-1156. doi: 10.1016/j.compositesb.2011.03.008
    [24]
    中国国家标准化管理委员会. 夹层结构或芯子平压性能试验方法: GB/T 1453—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for flatwise compression of sandwich constructions or cores: GB/T 1453—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [25]
    中国国家标准化管理委员会. 夹层结构侧压性能试验方法: GB/T 1454—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for edgewise compressive properties of sandwich constructions: GB/T 1454—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [26]
    中国国家标准化管理委员会. 玻璃纤维增强塑料树脂含量试验方法: GB/T 2577—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Reublic of China. Test method for resin content of glass fiber reinforced plastics: GB/T 2577—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (1027) PDF downloads(93) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return