Volume 39 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
XIE Hangmin, WU Hanqing, HE Zhiwei, et al. Research progress in MoS2/MXene nanocomposites[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1005-1016. doi: 10.13801/j.cnki.fhclxb.20210701.001
Citation: XIE Hangmin, WU Hanqing, HE Zhiwei, et al. Research progress in MoS2/MXene nanocomposites[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1005-1016. doi: 10.13801/j.cnki.fhclxb.20210701.001

Research progress in MoS2/MXene nanocomposites

doi: 10.13801/j.cnki.fhclxb.20210701.001
  • Received Date: 2021-05-31
  • Accepted Date: 2021-06-27
  • Rev Recd Date: 2021-06-22
  • Available Online: 2021-07-01
  • Publish Date: 2021-03-01
  • Compared with individual two-dimensional MoS2 and MXene, MoS2/MXene nanocomposites show excellent and stable physical and chemical properties, attracting widespread attention among domestic and foreign researchers. This paper reviews recent research progress in MoS2/MXene nanocomposites. First, the preparation methods of MoS2/MXene nanocomposites as well as their advantages and disadvantages are elaborated, including hydrothermal methods, intercalation methods and thermal annealing. Then, the applications of MoS2/MXene composites in various fields are introduced, such as energy storage, catalysis and sensors. In the end, the prospects of future development and application of MoS2/MXene nanocomposites are proposed.

     

  • loading
  • [1]
    NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th Anniversary article: MXenes: A new family of two-simensional materials[J]. Advanced Materials,2014,26(7):992-1005. doi: 10.1002/adma.201304138
    [2]
    BOOTA M, GOGOTSI Y. MXene—conducting polymer asymmetric pseudocapacitors[J]. Advanced Energy Materials,2019,9(7):1802917. doi: 10.1002/aenm.201802917
    [3]
    WANG S, MA Z, LÜ Q F, et al. Two-dimensional Ti3C2Tx/polyaniline nanocomposite from the decoration of small-sized graphene nanosheets: Promoted pseudocapacitive electrode performance for supercapacitors[J]. ChemElectroChem,2019,6(10):2748-2754. doi: 10.1002/celc.201900433
    [4]
    WU W, NIU D, ZHU J, et al. Organ-like Ti3C2 Mxenes/polyaniline composites by chemical grafting as high-performance supercapacitors[J]. Journal of Electroanalytical Chemistry,2019,847:113203. doi: 10.1016/j.jelechem.2019.113203
    [5]
    NATU V, HART J L, SOKOL M, et al. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions[J]. Angewandte Chemie International Edition,2019,58(36):12655-12660. doi: 10.1002/anie.201906138
    [6]
    GAO L, LI C, HUANG W, et al. MXene/polymer membranes: Synthesis, properties, and emerging applications[J]. Chemistry of Materials,2020,32(5):1703-1747. doi: 10.1021/acs.chemmater.9b04408
    [7]
    ZHAN X, SI C, ZHOU J, et al. MXene and MXene-based composites: Synthesis, properties and environment-related applications[J]. Nanoscale Horizons,2020,5(2):235-258. doi: 10.1039/C9NH00571D
    [8]
    LI Y, YANG S, LIANG Z, et al. 1T-MoS2 nanopatch/Ti3C2 MXene/TiO2 nanosheet hybrids for efficient photo-catalytic hydrogen evolution[J]. Materials Chemistry Frontiers,2019,3(12):2673-2680. doi: 10.1039/C9QM00608G
    [9]
    MANZELI S, OVCHINNIKOV D, PASQUIER D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials,2017,2(8):17033. doi: 10.1038/natrevmats.2017.33
    [10]
    JAYABAL S, SARANYA G, WU J, et al. Understanding the high-electrocatalytic performance of two-dimensional MoS2 nanosheets and their composite materials[J]. Jour-nal of Materials Chemistry A,2017,5(47):24540-24563. doi: 10.1039/C7TA08327K
    [11]
    LI C, WU G, WANG C, et al. Tuning electronic and transport properties of MoS2/Ti2C heterostructure by external strain and electric field[J]. Computational Materials Science,2018,153:417-423. doi: 10.1016/j.commatsci.2018.07.010
    [12]
    ZHAO P, JIN H, LV X, et al. Modified MXene: Promising electrode materials for constructing ohmic contacts with MoS2 for electronic device applications[J]. Physical Che-mistry Chemical Physics,2018,20(24):16551-16557. doi: 10.1039/C8CP02300J
    [13]
    ZOU X, ZHAO X, ZHANG J, et al. Photocatalytic degradation of ranitidine and reduction of nitrosamine dimethylamine formation potential over MXene–Ti3C2/MoS2 under visible light irradiation[J]. Journal of Hazardous Materials,2021,413:125424. doi: 10.1016/j.jhazmat.2021.125424
    [14]
    ZHANG J, XING C, SHI F. MoS2/Ti3C2 heterostructure for efficient visible-light photocatalytic hydrogen generation[J]. International Journal of Hydrogen Energy,2020,45(11):6291-6301. doi: 10.1016/j.ijhydene.2019.12.109
    [15]
    YOU J, SI C, ZHOU J, et al. Contacting MoS2 to MXene: Vanishing p-type Schottky barrier and enhanced hydrogen evolution catalysis[J]. The Journal of Physical Chemistry C,2019,123(6):3719-3726. doi: 10.1021/acs.jpcc.8b12469
    [16]
    ZHANG Y, MU Z, YANG C, et al. Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials,2018,28:1707578. doi: 10.1002/adfm.201707578
    [17]
    ZHENG M, GUO R, LIU Z, et al. MoS2 intercalated p-Ti3C2 anode materials with sandwich-like three dimensional conductive networks for lithium-ion batteries[J]. Journal of Alloys and Compounds,2018,735:1262-1270. doi: 10.1016/j.jallcom.2017.11.250
    [18]
    SONG D X, XIE L, ZHANG Y F, et al. Multilayer ion load and diffusion on TMD/MXene heterostructure anodes for alkali-ion batteries[J]. ACS Applied Energy Materials,2020,3(8):7699-7709. doi: 10.1021/acsaem.0c01110
    [19]
    WANG W, ZHANG K, QIAO Z, et al. Influence of surfactants on the synthesis of MoS2 catalysts and their activities in the hydrodeoxygenation of 4-methylphenol[J]. Industrial & Engineering Chemistry Research,2014,53(25):10301-10309.
    [20]
    LI X, WEN C, YANG L, et al. Enhanced visualizing charge distribution of 2D/2D MXene/MoS2 heterostructure for excellent microwave absorption performance[J]. Journal of Alloys and Compounds,2021,869:159365. doi: 10.1016/j.jallcom.2021.159365
    [21]
    HU L, SUN Y, SHIJING G, et al. Experimental and theoretical investigation on MoS2/MXene heterostructure as an efficient electrocatalyst for hydrogen evolution in both acidic and alkaline media[J]. New Journal of Chemistry,2020,44(19):7902-7911. doi: 10.1039/D0NJ00956C
    [22]
    DU G, TAO M, GAO W, et al. Preparation of MoS2/Ti3C2Tx composite as anode material with enhanced sodium/lithium storage performance[J]. Inorganic Chemistry Frontiers,2019,6(1):117-125. doi: 10.1039/C8QI01081A
    [23]
    HOU W, SUN Y, ZHANG Y, et al. Mixed-dimensional heterostructure of few-layer MXene based vertical aligned MoS2 nanosheets for enhanced supercapacitor performance[J]. Journal of Alloys and Compounds,2021,859:157797. doi: 10.1016/j.jallcom.2020.157797
    [24]
    LI J, RUI B, WEI W, et al. Nanosheets assembled layered MoS2/MXene as high performance anode materials for potassium ion batteries[J]. Journal of Power Sources,2020,449:227481. doi: 10.1016/j.jpowsour.2019.227481
    [25]
    LIU M C, ZHANG Y S, ZHANG B M, et al. Large interlayer spacing 2D Ta4C3 matrix supported 2D MoS2 nanosheets: A 3D heterostructure composite towards high-performance sodium ions storage[J]. Renewable Energy,2021,169:573-581. doi: 10.1016/j.renene.2021.01.051
    [26]
    SUN J, JIAO S, LIAN G, et al. Hierarchical MoS2/m-C@a-C@Ti3C2 nanohybrids as superior electrodes for enhanced sodium storage and hydrogen evolution reaction[J]. Chemical Engineering Journal,2021,421(9):129680.
    [27]
    WU Y, NIE P, JIANG J, et al. MoS2-nanosheet decorated 2D titanium carbide (MXene) as high-performance anodes for sodium-ion batteries[J]. ChemElectroChem,2017,4(6):1560-1565. doi: 10.1002/celc.201700060
    [28]
    XU M, BAI N, LI H X, et al. Synthesis of MXene-supported layered MoS2 with enhanced electrochemical performance for Mg batteries[J]. Chinese Chemical Letters,2018,29(8):1313-1316. doi: 10.1016/j.cclet.2018.04.023
    [29]
    YUAN Z, WANG L, LI D, et al. Carbon-reinforced Nb2CTx MXene/MoS2 nanosheets as a superior rate and high-capacity anode for sodium-ion batteries[J]. ACS Nano,2021,15(4):7439-7450. doi: 10.1021/acsnano.1c00849
    [30]
    CHEN R, WANG P, CHEN J, et al. Synergetic effect of MoS2 and MXene on the enhanced H2 evolution performance of CdS under visible light irradiation[J]. Applied Surface Science,2019,473:11-19. doi: 10.1016/j.apsusc.2018.12.071
    [31]
    HUANG L, AI L, WANG M, et al. Hierarchical MoS2 nanosheets integrated Ti3C2 MXenes for electrocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy,2019,44(2):965-976. doi: 10.1016/j.ijhydene.2018.11.084
    [32]
    LI X, LV X, SUN X, et al. Edge-oriented, high-percentage 1T'-phase MoS2 nanosheets stabilize Ti3C2 MXene for efficient electrocatalytic hydrogen evolution[J]. Applied Catalysis B-Environmental,2021,284:119708. doi: 10.1016/j.apcatb.2020.119708
    [33]
    LI Y, DING L, LIANG Z, et al. Synergetic effect of defects rich MoS2 and Ti3C2 MXene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2[J]. Chemical Engineering Journal,2020,383:123178. doi: 10.1016/j.cej.2019.123178
    [34]
    LI Y, YIN Z, JI G, et al. 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity[J]. Applied Catalysis B-Environmental,2019,246:12-20. doi: 10.1016/j.apcatb.2019.01.051
    [35]
    REN J, ZONG H, SUN Y, et al. 2D organ-like molybdenum carbide (MXene) coupled with MoS2 nanoflowers enhances catalytic activity in the hydrogen evolution reaction[J]. CrystEngComm,2020,22(8):1395-1403. doi: 10.1039/C9CE01777A
    [36]
    XU R, WEI N, LI Z, et al. Construction of hierarchical 2D/2D Ti3C2/MoS2 nanocomposites for high-efficiency solar steam generation[J]. Journal of Colloid and Interface Science,2021,584:125-133. doi: 10.1016/j.jcis.2020.09.052
    [37]
    XU X, SUN B, LIANG Z, et al. High-performance electrocatalytic conversion of N2 to NH3 using 1T-MoS2 anchored on Ti3C2 MXene under ambient conditions[J]. ACS Applied Materials & Interfaces,2020,12(23):26060-26067.
    [38]
    YAO Z, SUN H, SUI H, et al. 2D/2D heterojunction of R-scheme Ti3C2 MXene/MoS2 nanosheets for enhanced photocatalytic performance[J]. Nanoscale Research Letters,2020,15(1):78. doi: 10.1186/s11671-020-03314-z
    [39]
    ALIMOHAMMADI F, SHARIFIAN G H M, ATTANAYAKE N H, et al. Antimicrobial properties of 2D MnO2 and MoS2 nanomaterials vertically aligned on graphene materials and Ti3C2 MXene[J]. Langmuir,2018,34(24):7192-7200. doi: 10.1021/acs.langmuir.8b00262
    [40]
    HASSAN A, ASLAM M A, BILAL M, et al. Modulating dielectric loss of MoS2@Ti3C2Tx nanoarchitectures for electromagnetic wave absorption with radar cross section reduction performance verified through simulations[J]. Ceramics International,2021,47(14):20706-20716. doi: 10.1016/j.ceramint.2021.04.014
    [41]
    LIU L, WEI Y, JIAO S, et al. A novel label-free strategy for the ultrasensitive miRNA-182 detection based on MoS2/Ti3C2 nanohybrids[J]. Biosensors & Bioelectronics,2019,137:45-51.
    [42]
    WANG J, LIU L, JIAO S, et al. Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption[J]. Advanced Functional Materials,2020,30(45):2002595. doi: 10.1002/adfm.202002595
    [43]
    WANG X, LI H, LI H, et al. 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance[J]. Advanced Functional Materials,2020,30(15):0190302. doi: 10.1002/adfm.201910302
    [44]
    KIRUBASANKAR B, NARAYANASAMY M, YANG J, et al. Construction of heterogeneous 2D layered MoS2/MXene nanohybrid anode material via interstratification process and its synergetic effect for asymmetric supercapacitors[J]. Applied Surface Science,2020,534:147644. doi: 10.1016/j.apsusc.2020.147644
    [45]
    MA K, DONG Y, JIANG H, et al. Densified MoS2/Ti3C2 films with balanced porosity for ultrahigh volumetric capacity sodium-ion battery[J]. Chemical Engineering Journal,2021,413:127479. doi: 10.1016/j.cej.2020.127479
    [46]
    YANG X, JIA Q, DUAN F, et al. Multiwall carbon nanotubes loaded with MoS2 quantum dots and MXene quantum dots: Non–Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution[J]. Applied Surface Science,2019,464:78-87. doi: 10.1016/j.apsusc.2018.09.069
    [47]
    KASHEFI-KHEYRABADI L, KOYAPPAYIL A, KIM T, et al. A MoS2@Ti3C2Tx MXene hybrid-based electrochemical aptasensor (MEA) for sensitive and rapid detection of thyroxine[J]. Bioelectrochemistry,2021,137:107674. doi: 10.1016/j.bioelechem.2020.107674
    [48]
    CHEN X, WANG S, SHI J, et al. Direct laser etching free-standing MXene-MoS2 film for highly flexible micro-supercapacitor[J]. Advanced Materials Interfaces,2019,6(22):1901160. doi: 10.1002/admi.201901160
    [49]
    MA K, JIANG H, HU Y, et al. 2D nanospace confined synthesis of pseudocapacitance-dominated MoS2-in-Ti3C2 superstructure for ultrafast and stable Li/Na-ion batteries[J]. Advanced Functional Materials,2018,28(40):1804306. doi: 10.1002/adfm.201804306
    [50]
    LIU J, LIU Y, XU D, et al. Hierarchical “nanoroll” like MoS2/Ti3C2Tx hybrid with high electrocatalytic hydrogen evolution activity[J]. Applied Catalysis B-Environmental,2019,241:89-94. doi: 10.1016/j.apcatb.2018.08.083
    [51]
    BAI J, ZHAO B, LIN S, et al. Construction of hierarchical V4C3-MXene/MoS2/C nanohybrids for high rate lithium-ion batteries[J]. Nanoscale,2020,12(2):1144-1154. doi: 10.1039/C9NR07646H
    [52]
    LIANG J, DING C, LIU J, et al. Heterostructure engineering of Co-doped MoS2 coupled with Mo2CTx MXene for enhanced hydrogen evolution in alkaline media[J]. Nanoscale,2019,11(22):10992-11000. doi: 10.1039/C9NR02085C
    [53]
    SHEN C, WANG L, ZHOU A, et al. MoS2-decorated Ti3C2 MXene nanosheet as anode material in lithium-ion batteries[J]. Journal of the Electrochemical Society,2017,164(12):2654-2659. doi: 10.1149/2.1421712jes
    [54]
    CHEN C, XIE X, ANASORI B, et al. MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries[J]. Angewandte Chemie International Edition,2018,57(7):1846-1850. doi: 10.1002/anie.201710616
    [55]
    BENCHAKAR M, NATU V, ELMELEGY T A, et al. On a two-dimensional MoS2/Mo2CTx hydrogen evolution catalyst obtained by the topotactic sulfurization of Mo2CTx MXene[J]. Journal of the Electrochemical Society,2020,167(12):124507. doi: 10.1149/1945-7111/abad6e
    [56]
    LIM K R G, HANDOKO A D, JOHNSON L R, et al. 2H-MoS2 on Mo2CTx MXene nanohybrid for efficient and durable electrocatalytic hydrogen evolution[J]. ACS Nano,2020,14(11):16140-16155. doi: 10.1021/acsnano.0c08671
    [57]
    ATTANAYAKE N H, ABEYWEERA S C, THENUWARA A C, et al. Vertically aligned MoS2 on Ti3C2 (MXene) as an improved HER catalyst[J]. Journal of Materials Chemistry A,2018,6(35):16882-16889. doi: 10.1039/C8TA05033C
    [58]
    LI S, QUE X, CHEN X, et al. One-step synthesis of modified Ti3C2 MXene-supported amorphous molybdenum sulfide electrocatalysts by a facile Gamma radiation strategy for efficient hydrogen evolution reaction[J]. ACS Applied Energy Materials,2020,3(11):10882-10891. doi: 10.1021/acsaem.0c01900
    [59]
    CHANDRAN M, THOMAS A, RAVEENDRAN A, et al. MoS2 confined MXene heterostructures as electrode material for energy storage application[J]. Journal of Energy Storage,2020,30:101446. doi: 10.1016/j.est.2020.101446
    [60]
    VINOBA M, NAVVAMANI R, AL-SHEEHA H. Epitaxial synthesis of Ni–MoS2/Ti3C2Tx MXene heterostructures for hydrodesulfurization[J]. RSC Advances,2020,10(21):12308-12317. doi: 10.1039/D0RA01158D
    [61]
    CHOI S, KIM Y J, JEON J, et al. Scalable two-dimensional lateral metal/semiconductor junction fabricated with selective synthetic integration of transition-metal-carbide (Mo2C)/-dichalcogenide (MoS2)[J]. ACS Applied Materials & Interfaces,2019,11(50):47190-47196.
    [62]
    JEON J, PARK Y, CHOI S, et al. Epitaxial synthesis of molybdenum carbide and formation of a Mo2C/MoS2 hybrid structure via chemical conversion of molybdenum disulfide[J]. ACS Nano,2018,12(1):338-346. doi: 10.1021/acsnano.7b06417
    [63]
    WANG T, CHEN S, PANG H, et al. MoS2-based nanocomposites for electrochemical energy storage[J]. Advanced Science,2017,4(2):1600289. doi: 10.1002/advs.201600289
    [64]
    WU Y, YU Y. 2D material as anode for sodium ion batteries: Recent progress and perspectives[J]. Energy Storage Materials,2019,16:323-343. doi: 10.1016/j.ensm.2018.05.026
    [65]
    HAN Y, GE Y, CHAO Y, et al. Recent progress in 2D materials for flexible supercapacitors[J]. Journal of Energy Chemistry,2018,27(1):57-72. doi: 10.1016/j.jechem.2017.10.033
    [66]
    SHAO Y, GONG P, PAN H, et al. H-/dT-MoS2-on-MXene heterostructures as promising 2D anode materials for lithium-ion batteries: Insights from first principles[J]. Advanced Theory Simulations,2019,2(8):1900045. doi: 10.1002/adts.201900045
    [67]
    LI J, PENG Q, ZHOU J, et al. MoS2/Ti2CT2 (T = F, O) heterostructures as promising flexible anodes for lithium/sodium ion batteries[J]. Journal of the Physical Chemistry C,2019,123(18):11493-11499. doi: 10.1021/acs.jpcc.9b01648
    [68]
    WANG H, WU Y, YUAN X, et al. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State of the art progresses and challenges[J]. Advanced Materials,2018,30(12):1704561. doi: 10.1002/adma.201704561
    [69]
    GUPTA U, RAO C N R. Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides[J]. Nano Energy,2017,41:49-65. doi: 10.1016/j.nanoen.2017.08.021
    [70]
    GAO M R, CHAN M K Y, SUN Y. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production[J]. Nature Communications,2015,6(1):7493. doi: 10.1038/ncomms8493
    [71]
    XU X, GE X, LIU X, et al. Two-dimensional M2CO2/MoS2 (M = Ti, Zr and Hf) Van Der Waals heterostructures for overall water splitting: A density functional theory study[J]. Ceramics International,2020,46(9):13377-13384. doi: 10.1016/j.ceramint.2020.02.119
    [72]
    JIN S, HU Q, WANG L, et al. Comment on “MoS2/Ti3C2 heterostructure for efficient visible-light photocatalytic hydrogen generation”[J]. International Journal of Hydrogen Energy,2020,45(24):13559-13562. doi: 10.1016/j.ijhydene.2020.03.065
    [73]
    LIU L, SHANGGUAN C, GUO J, et al. Ultrasensitive SERS detection of cancer-related miRNA-182 by MXene/MoS2@AuNPs with controllable morphology and optimized self-internal standards[J]. Advanced Optical Materials,2020,8(23):2001214. doi: 10.1002/adom.202001214
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article Metrics

    Article views (2143) PDF downloads(164) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return